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ABSTRACT

The challenge of maintaining Web applications is preventing actual errors in a user
environment. Currently, users demand rich user experience of applications; hence, client-
side asynchronous JavaScript and XML (Ajax) technologies are increasingly important.
Developers build modern Web applications using Ajax technologies (Ajax Web appli-
cations), which can handle user events and asynchronously retrieve update data from
servers. Thus, Ajax technologies make Web applications responsive, enhancing user ex-
perience. However, Ajax event-driven and asynchronous features make the contexts of
running applications unpredictable. Despite concerted efforts by developers, these un-
predictable contexts might conceal faults in development and testing environments but
they will be exposed in a user environment.

Much research has been conducted on state-based analysis and testing for finding
faults in Ajax Web applications. The states of these applications correspond to the
document object model (DOM) representing Web pages. Since these applications dy-
namically manipulate DOMs by handling user events or server responses, some have
succeeded in leveraging dynamic analysis techniques for extracting a finite state machine
(FSM) based on DOM instances captured at runtime. Although current DOM-based
testing techniques effectively and efficiently detect executable faults, they do not help
finding “potential faults” that are not easily produced in a testing environment but will
be exposed in a user environment.

First, we propose a static method for extracting an FSM from Ajax Web applications.
Since DOMs cannot be determined in a static manner because they are dynamically ma-
nipulated, we focus on interactions with Ajax Web applications (e.g., mouse clicks and
server responses), which act as triggers to change the application states. These interac-
tions can be statically distinguished at event handlers in the source code. Hence, our
proposed method extracts an interaction-based FSM representing all possible application
behaviors. Developers can use the extracted FSM to find the potential faults; however,
the cost may not be negligible to manually and carefully determine the correctness of
the extracted FSM, which does not enable developers to exhaustively find faults in the
applications.

Second, we propose a method for automatically verifying the correctness of the ex-
tracted FSM. Model checking techniques are useful for automated verification against
given invariants representing correct behaviors; however, there are no generic behav-
ior invariants relevant to the interactions. Therefore, we define interaction invariants
from correct and incorrect interaction-based behaviors described in Ajax design pat-
terns, which is a catalog of Ajax Web application development know-how. The model
checker leverages the interaction invariants to identify faulty interaction sequences in the
extracted FSM. Although the identified faulty interaction sequences should contain sus-
pected faults, they might be spurious counterexamples in the extracted FSM. Therefore,
executable evidence that the suspected faults cause errors in Ajax Web applications is
required.

Finally, we propose a method for validating applications by revealing actual errors
due to potential faults. Although testing all possible scenarios in every environment
should reveal these errors, such a method would be unrealistic. Under an assumption
that unexpected network latency may make potential faults executable, we implement
mutation operators to manipulate the timing of the applications handling server inter-
actions. Our mutation operators are able to produce subtle network delays, which can
reveal errors due to delay-dependent potential faults.

From the results of our case studies using real-world Ajax Web applications, our
proposed methods revealed errors relevant to vulnerabilities in Web applications, which
current analysis and testing techniques cannot detect. Therefore, we conclude that our
proposed methods can help developers find and debug potential faults, i.e., help in pre-
ventive maintenance of Ajax Web applications.



論文要旨

Web アプリケーションを保守する際の課題は，ユーザ環境でのエラーの顕在化を防ぐこ

とである．近年のWeb アプリケーションでは豊かなユーザ体験への需要が大きいため，ク

ライアント側における Asynchronous JavaScript and XML （ Ajax ） 技術の重要性が高

まっている．Ajax 技術を実装した Web アプリケーション（ Ajax Web アプリ）は，ユー

ザイベントに応じて更新データを非同期通信により取得することで，応答性を高めユーザ

体験の向上が見込める．しかし， Ajax 技術のイベント駆動性・非同期性により，開発者

が Ajax Web アプリの全ての実行状態を把握することは難しく，欠陥のある実行状態を見

逃す恐れがあり，ユーザ環境でのエラーの顕在化につながる．

Ajax Web アプリの欠陥発見のために，状態遷移モデルを元に解析・テストする手法が

研究されている．Ajax Web アプリでは Document Object Model （ DOM ）構造をその

状態と見なせる．DOM は実行時のユーザイベントや非同期通信の結果に応じて動的に操

作されるため，Ajax Web アプリの実行結果から状態遷移モデルを抽出しテストする動的

解析手法が取り組まれてきた．既存手法は Ajax Web アプリの実行可能な欠陥を効果的・

効率的に検出できる．しかし，開発者のテスト環境で再現しないが，ユーザ環境で顕在化

する “潜在的な欠陥”の発見は難しい．

本研究ではまず，Ajax Web アプリから静的に状態遷移モデルを抽出する手法を提案す

る．実行時に決まる DOM は静的に解析できないため，提案手法では Ajax Web アプリ

の状態を変化させる相互作用（例えば，マウスクリックやサーバレスポンス）に着目する．

ソースコード上のイベントハンドラから静的に抽出できる相互作用を元にすると，Ajax

Web アプリの実行可能性に依存しない状態遷移モデルを抽出でき，開発者が振舞いを理解

し潜在的な欠陥の発見に役に立つと期待できる．しかし，複雑な状態遷移モデルが抽出さ

れる場合，開発者が人手で精査することは難しくなる．

次に本研究では，抽出された状態遷移モデルの正しさを自動的に検証する手法を提案す

る．状態遷移モデルの正しさの検証にモデル検査技術を利用するには，正しい振舞いを表

す不変条件が必要だが，Ajax Web アプリの相互作用に関わる正しい振舞いの一般的な定

義はない．そこで提案手法では，Ajax Web アプリ開発のノウハウをまとめた Ajax デザ

インパターンから相互作用に関わる振舞いを整理する．するとモデル検査器は，状態遷移

モデルから Ajax デザインパターンに反する状態遷移列を識別できる．しかし，得られた

状態遷移列は抽象的なモデルにおける偽反例の可能性があるため，実際に Ajax Web アプ

リのエラーを引き起こすか確かめる必要がある．

本研究ではさらに，潜在的な欠陥が原因となるエラーを顕在化することで Ajax Web ア

プリを検査する手法を提案する．Ajax Web アプリの全実行シナリオを全実行環境でテス

トすれば，そのエラーを顕在化できるが現実的でない．予期せぬ通信遅延がエラーの原因

となりやすいため，提案手法では Ajax Web アプリが同期的・非同期的な通信結果を処理

するタイミングを調整する変異操作を定義する．変異操作により通信遅延を繊細に調整で

き，通信遅延に依存する潜在的な欠陥が原因となるエラーを顕在化できる．

現実の Ajax Web アプリを用いた適用事例の結果，提案手法により脆弱性に関わるエ

ラーを顕在化でき，既存の解析・テスト手法ではそれらを検出できないことを確認した．し

たがって提案手法は，開発者が Ajax Web アプリの潜在的な欠陥を発見しデバッグする予

防保守に役立つと考えられる．
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Chapter 1

Introduction

1.1 Background

Web applications have become essential platforms used in daily life such as in-
formation search, e-commerce, and social networking services. Web applications
are built on the client-server architecture. Server-side technologies, e.g., Perl [80]
and PHP [92], dynamically generate Web page data according to user requests.
Currently, end-users demand rich user experience of Web applications [21]. Ac-
cordingly, client-side asynchronous JavaScript and XML (Ajax) technologies [25]
are increasingly important. Web applications with Ajax technologies (Ajax Web
applications) can handle user actions in an event-driven manner, asynchronously
retrieve Web page data from the servers, and dynamically update parts of a Web
page, so that the applications continuously process user requests on the client
side without page transitions. Thus, Ajax technologies improve the performance,
interactivity, and responsiveness of Web applications, providing rich user expe-
rience [78]. As a result, they are an integral part of the most visited websites
[2, 74], such as Google, Amazon, and Facebook, and can be credited with a
676.3% increase in end-users compared to a decade ago [64].

A key factor in attracting end-users is usability of Web applications [71];
usability criteria can be used to assess aspects of user experience [39]. Fortu-
nately, developers can build Ajax Web applications with Ajax design patterns
[49], which contain 70 comprehensive findings for increasing usability of Ajax
Web applications. However, event-driven, asynchronous, and dynamic features
of Ajax technologies make the contexts of running applications unpredictable.
Despite concerted efforts by developers, not all possible behaviors of running ap-
plications can be predicted. Although developers intend to correctly implement
Ajax design patterns, the unpredictable contexts might conceal faults that will
violate the properties of the design patterns, decreasing usability. A problem with
faults behind these unpredictable contexts is that developers have trouble in de-
tecting faults during testing because they might cause actual errors only when
complicated conditions are met [30]. Since it would be unrealistic to test the ap-
plications under all possible conditions, these faults are not easily detectable, and
users might eventually encounter erroneous behaviors in the applications when a
user environment meets the conditions.

Several studies have been conducted on state-based analysis and testing of
Ajax Web applications; a state-based approach is effective in finding faults in Ajax
Web applications [52]. Since the applications can interactively manipulate an
interface by using the document object model (DOM) [94], some have succeeded
in leveraging dynamic analysis techniques that can capture DOM instances at
runtime and can regard them as states of the applications [53, 22, 4, 7, 61]. With
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Figure 1.1: Overview of our proposed methods

the aid of the state space based on the execution results, this DOM-based testing
can be used for effectively and efficiently identifying executable faults in a testing
environment of developers.

Our motivation is that Ajax Web applications might have potential faults.
Potential faults are those that seem to cause actual errors if executed; however,
if these faults are not executed in a testing environment, developers have diffi-
culty in detecting them, possibly resulting in users encountering actual errors.
However, the DOM-based testing, which relies on the execution results of the
applications, does not help verify the correctness in execution paths that are not
part of the scenarios and environments given by developers. In contrast, static
approaches might have limitations in analyzing all possible DOM instances be-
cause interactive DOM manipulation inevitably lead to a state space explosion;
for example, an input form value, which is one of the DOM instance constituents,
can take all possible string values. Therefore, the challenge from the viewpoint of
software engineering is that we need to find a proper aspect of Ajax Web appli-
cations, instead of the DOM, that allows to statically analyze stateful behavior
of the applications and identify these potential faults.

1.2 Approach Overview

Figure 1.1 shows an overview of our approach in this study. We focus on inter-
actions with Ajax Web applications; these interactions correspond to how the
applications handle user events, asynchronous server responses, and timeouts, as
shown in Figure 2.2. In addition to the fact that interactions implemented in the
applications can be obtained from event handlers in the source code, we assume
that these interactions act as triggers that can change the application states;
hence, the interaction may be the proper aspect on state-based analysis to look
for potential faults in Ajax Web applications. Herein, we propose the following
methods to support developers in finding and debugging potential faults before
actual errors will be exposed in a user environment, i.e., to support preventive
maintenance of Ajax Web applications. These methods are implemented in a tool
called JSPreventer.
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1.2.1 Extraction Method

Developers might incorrectly implement Ajax design patterns in Ajax Web appli-
cations due to event-driven, asynchronous, and dynamic features of applications
(Implementation). For modeling these features, JSPreventer statically extracts
a finite state machine from HTML, JavaScript, and CSS codes of Ajax Web
applications (Extractor). JSPreventer parses the client-side HTML, CSS, and
JavaScript codes to find the interactions implemented as transitions of a finite
state machine. However, since pure HTML, CSS, and JavaScript parsers cannot
distinguish code fragments of event handlers corresponding to the interactions,
we define rules for distinguishing interactions implemented in the applications
(Distinguishing rules). Finally, JSPreventer constructs an interaction-based
finite state machine. Although developers can use the finite state machine to
manually determine whether the applications run as expected, it does not allow
them to exhaustively find faulty behaviors in the finite state machine.

1.2.2 Verification Method

Towards automatic detection of faulty behaviors in the finite state machine, JS-
Preventer uses the NuSMV model checker [13], which verifies the correctness
of nondeterministic automata. Since the NuSMV model checker cannot deter-
mine correct and incorrect behaviors of Ajax Web applications, we assume that
Ajax design patterns provide invariants relevant to the interactions (interaction
invariants). Developers can store information about implemented Ajax de-
sign patterns (IADP info) into a repository when building Ajax Web applica-
tions. JSPreventer instantiates interaction invariants with the guided IADP info
(Formulator). It then runs the NuSMV model checker to verify the correctness
of the extracted finite state machine with the invariants (Verifier). If the finite
state machine does not satisfy the invariants, JSPreventer obtains faulty interac-
tion sequences from counterexamples of the verification results, and reports the
presence of “potential faults” that seem to cause actual errors if executed.

1.2.3 Validation Method

Since Ajax design patterns are aimed to improve the usability of Ajax Web appli-
cations, code violations against the design patterns do not always lead to actual
errors being debugged. Additionally, the identified faulty interaction sequences
are counterexamples in the extracted finite state machine, not in the actual code.
Counterexamples in an abstract model can be spurious; hence, it is important
to reanalyze them in an actual system [98]. Herein, JSPreventer attempts to
find executable evidence of potential faults for validating Ajax Web applications
(Validator). However, it may not easily execute Ajax Web applications on
the faulty interaction sequences because a specified environment does not meet
specific conditions to reveal actual errors due to these potential faults. There-
fore, we assume that an unexpected network latency, which may cause severe
problems in Ajax Web applications [105], may make potential faults executable.
To emulate an unexpected network latency, we define synchronous and asyn-
chronous delay-based mutation operators (Delay-based mutation operators).
Although a program mutation technique is commonly used for injecting artifi-
cial faults [43], we leverage the technique to allow JSPreventer to make potential
faults executable in the specified environment.

Finally, JSPreventer outputs the extracted finite state machine, identified
faulty interaction sequences, and revealed actual errors. We expect that devel-
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opers can debug the applications by using these outputs (Debugging). Conse-
quently, we argue that our proposed methods can help developers conduct pre-
ventive maintenance on Ajax Web applications.

1.3 Contributions

We now summarize our contributions in this study. First, we propose the three
methods below. Although state-of-the-art studies have proposed effective and
efficient testing methods for identifying executable faults in Ajax Web applica-
tions, our proposed methods work for identifying potential faults that are not
easily executable in a given environment.

• A static extraction method of stateful behavior.

• A verification method of interaction invariants.

• A validation method using a delay-based mutation technique.

Additionally, we implement the following assets in JSPreventer for our proposed
methods.

• Distinguishing rules based on HTML, CSS, and JavaScript language and
library specifications.

• A fundamental set of interaction invariants based on Ajax design patterns.

• Synchronous and asynchronous delay-based mutation operators.

Finally, we discuss case studies we conducted and evaluate the usefulness of our
proposed methods.

• A preliminary case study whose results show that seven participants had
difficulty in addressing potential faults in Ajax Web applications.

• A case study on three real-world applications demonstrating that JSPreven-
ter can reveal actual errors due to potential faults in Ajax Web applications.

• Some of the revealed actual errors that are difficult to expose using testing
techniques and might cause severe vulnerabilities in the applications.

1.4 Organization

The rest of this thesis is organized as follows.

Chapter 2 We provide background on development of Ajax Web applications,
including a motivating example to explain our methods below. In Section
2.7, we define research questions addressed in this study.

Chapter 3 We first propose a static method for extracting a finite state ma-
chine from Ajax Web applications. For our extraction method, we define
rules for distinguishing the interactions implemented in the applications
in Section 3.2. We then explain a workflow of our extraction method in
Section 3.3.

Chapter 4 Secondly, we propose a method for verifying the correctness of the
extracted finite state machine. Towards automated verification, we lever-
age a model checking technique in Section 4.2. As behavior oracles of the
interaction-based stateful behavior in Ajax Web applications, we define in-
teraction invariants based on Ajax design patterns in Section 4.3.
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Chapter 5 Thirdly, we propose a method for validating the applications using
a program mutation technique. To make potential faults in the applica-
tions executable on the given environment, we develop synchronous and
asynchronous mutation operators in Section 5.2.2, resulting that our vali-
dation method reveals actual errors due to the potential faults.

Chapter 6 We conduct two case studies to evaluate the usefulness of our pro-
posed methods and discuss the experimental results in Section 6.1 and
Section 6.2.

Chapter 7 We present related work to our proposed methods in domains of
state-based analysis and testing of Web applications, JavaScript control flow
analysis, design pattern verification, client-server codes traceability, muta-
tion analysis and testing, debugging concurrent programs, and automated
program repair.

Chapter 8 Finally, we conclude this study and indicate directions for future
work.
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Chapter 2

Background on Development of Ajax Web

Applications

In this chapter, we first describe Asynchronous JavaScript and XML (Ajax) tech-
nologies that can be used to build responsive Web applications. We henceforth
use the term Ajax Web applications instead of Web applications with Ajax tech-
nologies. We then explain interactions with the applications as an important
development concern and Ajax design patterns that contain comprehensive find-
ings observed in many real-world applications. Next, we give a description of
software maintenance, especially, preventive maintenance, as an integral part of
the software development process. After that, we present state-of-the-art studies
on state-based analysis and testing of Ajax Web applications and give a motivat-
ing example that is used to explain our proposed methods in Chapters 3, 4, and
5. Finally, we determine research questions addressed in this study.

2.1 Asynchronous JavaScript and XML (Ajax)

Jesse James Garrett introduced Asynchronous JavaScript and XML (Ajax) in
2005 as the best-of-breed approach to build responsive Web applications [25].
Ajax consist of the following existing technologies.

• JavaScript [66] is an object-oriented language for implementing business
logic on the client-side of Web applications, and JavaScript programs bind
up all the technologies below.

• HyperText Markup Language (HTML) [96] is used for defining the structure
and content of Web pages. The presentational aspects of Web pages are
supported by properties of Cascading Style Sheets (CSS) [93].

• Document Object Model (DOM) [94] provides APIs that allow JavaScript
programs to dynamically manipulate the page structure, content, and pre-
sentation.

• Extensible Markup Language (XML) [95] and Extensible Stylesheet Lan-
guage Transformations (XSLT) [97] are used for data interchange and ma-
nipulation.

• XMLHttpRequest (XHR) [68] is a JavaScript object that provides a method
for asynchronous data retrieval.

Figure 2.1 shows a comparison between traditional and Ajax Web application
models, as described in [25, Figure 1]. In both of these models, Web applications
are built on the client-server architecture. Server-side technologies, e.g., Perl

6



Client-side browser Server-side systems 

User interface 

Database 

Web server 
HTTP request 

Access Data 
Web page data 
(HTML/CSS/JavaScript) 

(a) Traditional Web application model

Client-side browser Server-side systems 

User interface 

Database 

Web server 
HTTP request 

Access Data 

Web page data 
(XML) 

JavaScript 

call 

Web page data 
(HTML/CSS) 

Ajax engine 

(b) Ajax Web application model

Figure 2.1: Comparison between traditional and Ajax Web application models

[80] and PHP [92], dynamically generate Web page data1 according to HTTP
requests. Today, end-users demand rich user experience of Web applications [21];
hence, a traditional Web application exhibits problems due to the “page-based
client model” [23], in which it refreshes whole of a Web page with round-trip
server access in response to each user action, resulting in problems; for example,
users cannot interact with the application during page transitions.

Here, client-side Ajax technologies can be used to solve the problems and are
increasingly important in Web applications. By leveraging an Ajax engine on
the client-side, an Ajax Web application can handle user actions in an event-
driven manner, asynchronously retrieve Web page data from the servers, and
dynamically update parts of a Web page, so that it can continuously process user
requests on the client side without page transitions. Thus, Ajax technologies
can improve performance, interactivity, and responsiveness of Web applications,
providing rich user experience [78, 91].

As a result, they are an integral part of the most visited websites; Ocariza et
al. examined the Alexa top 100 most visited websites [2, 74], such as Google,
Amazon, and Facebook, and 97 of them used the client-side JavaScript, i.e.,
Ajax technologies. From the statistical point of view, Miniwatts Marketing Group
publishes World Internet Users and Population Stats that indicates a
676.3% increase in end-users compared to a decade ago and the number of them
exceeded 2.8 billions as of December 2013 [64]. Since Ajax technologies had not
yet been introduced in this decade ago, they can be credited with this explosive
growth of Web applications.

1Other resources, e.g., images, audios, and videos, can be interchanged via the HTTP(S)
communications.
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2.2 Interactions with Ajax Web Applications

Our research target is interactions with AjaxWeb applications, as shown in Figure
2.2. When developing and maintaining Ajax Web applications, interactions with
the applications need to be considered to improve user experience [23]. Since the
applications are primarily aimed at providing rich user experience [21], developers
are concerned with the following.

• Event type: Interactions the application can handle. We argue that inter-
actions can be classified into user, server, and self interactions correspond-
ing to nondeterministic elements such as user events, asynchronous server
responses, and timeouts, as shown in Figure 2.2.

• Callback function: Application behavior when handling interactions.

Developers can also control whether the application will handle certain interac-
tions. For determining application behavior, developers need to recognize the
effects of enabling and disabling these interactions [33]. Hence, we can argue
that the following is also a concern for developers.

• Enable/Disable statement: Application behavior when enabling and
disabling interactions.

Unfortunately, developers have difficulties in correctly implementing interac-
tions so that Ajax Web applications run as expected. This is because the interac-
tions correspond to the nondeterministic elements and they make contexts of run-
ning applications unpredictable. Despite concerted efforts by developers, not all
possible behaviors of running applications can be predicted, and these difficult-
to-predict behaviors may be error-prone. Therefore, we address to extract a
behavioral model, i.e., a finite state machine, representing interaction-based be-
havior from Ajax Web applications, as described in Chapter 3. We expect that
developers can use the extracted model for understanding the interaction-based
behavior and hopefully finding faults behind the unpredictable contexts of the
applications.

2.3 Ajax Design Patterns

The success of modern Web applications lies in asynchronous technologies such
as Ajax [24], because the event-driven, asynchronous, and dynamic features can
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make the applications interactive and responsive, providing rich user experience
with end-users [78]. Web usability is a key factor in attracting an increasing
number of end-users [71]; usability criteria can be used to assess aspects of user
experience [39]. Fortunately, developers can build Ajax Web applications with
Ajax design patterns [49], which contain 70 comprehensive findings in terms of
usability observed in many real-world Ajax Web applications. Thus, developers
can leverage the Ajax design patterns for increasing usability of Ajax Web ap-
plications. Ajax design patterns are divided into the four categories below. For
this study, we leverage the findings relevant to the interactions as interaction
invariants, i.e., behavior oracles, in Ajax Web applications.

Foundamental technology patterns (11 patterns) are the bu-
ilding blocks that differentiate Ajax from conventional approa-
ches, [...] explain typical usage.

Programming patterns (23 patterns) are the features of archi-
tecture and code that serve the software design principles [...].
These include, among other things, design of web services; man-
aging information flow between browser and server; populating
the DOM when a response arrives; and optimizing performance.

Functional and usability patterns (28 patterns) are the thin-
gs that matter to users, including widgets and interaction tech-
niques; structuring and maintaining what’s on the page; visual
effects; and functionality that Ajax makes possible.

Development patterns (8 patterns) are process patterns advis-
ing on best practices for development, as opposite to all the
previous patterns, which are “things” that live inside as Ajax
applications. The practices are about diagnosing problems and
running tests. [sic]

However, even if developers intend to correctly implement Ajax design pat-
terns, unpredictable contexts of running applications might conceal faults that
will violate the properties of the design patterns. Although developers test
whether the application runs according to the design patterns, testing tech-
niques do not help verify the correctness of all execution paths. For exam-
ple, the User Action design pattern suggests that applications should regis-
ter user events at page load; we call such a property “user event handler

registration (UEHRegist)” in Section 4.3. This is because executing user event
callback functions before displaying Web page elements might result in erroneous
behavior. In development and testing environments of developers, the applica-
tion immediately completes the loading of all page elements; however, running
the applications in a user environment might lengthen the loading time, resulting
in an erroneous behavior. Such applications evolving over time might have an in-
creasing risk of violating properties of design patterns [9]. Therefore, in Chapter
4, we try to verify whether an interaction-based behavior extracted from Ajax
Web applications violates properties of Ajax design patterns implemented in the
applications and suggest the presence of potential faults that seem to cause actual
errors if executed. We expect that developers can debug the detected potential
faults before users will encounter actual errors due to them.
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2.4 Preventive Maintenance

Software maintenance is defined in ISO/IEC 14764:2006 [40] as “the totality of
activities to provide cost-effective support to a software system”, and it has been
crucial in the software development process because its rising cost has not been
negligible; 50-90% of software life cycle costs come from software maintenance [6].
According to the standard, developers propose modifications called modification
requests for a software product being maintained, and these requests are iden-
tified as the following types. Figure 2.3 shows these identifications of software
maintenance activities, as depicted in [40, Figure 1].

Adaptive maintenance the modification of a software product,
performed after delivery, to keep a software product usable in a
changed or changing environment.

Corrective maintenance the reactive modification of a software
product performed after delivery to correct discovered problems.

Perfective maintenance the modification of a software product
after delivery to detect and correct latent faults in the software
product before they are manifested as failures.

Preventive maintenance the modification of a software product
after delivery to detect and correct latent faults in the software
product before they become operational faults.

Adaptive and perfective types are classified as maintenance enhancement,
which is “a modification to an existing software product to satisfy a ‘new’ re-
quirement”; Salehie et al. claimed ‘dynamic or runtime’ changes in a software
product or its contexts as the basis for adaptation [84]. For an ‘existing’ re-
quirement, another class is maintenance correction consisting of corrective and
preventive types. Our aim is to prevent users from encountering actual errors
due to potential faults detected, i.e., ‘existing’, in Ajax Web applications; thus,
this study is directed to preventive maintenance of the applications.

To accomplish preventive maintenance of Ajax Web applications, developers
need to debug detected potential faults. From the perspective of preventive main-
tenance, in 1985, Jim Gray devised the Bohrbug-Heisenbug hypothesis; software
faults that developers have difficulty addressing can be classified as a Bohrbug or
Heisenbug [28]. More recently, Michael Grottke et al. claimed that a Heisenbug
can be a subtype of a Mandelbug and precisely defined these types as follows [29]:
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Bohrbug An easily isolated fault that manifests consistently under
a well-defined set of conditions, because its activation and error
propagation lack “complexity” as defined below.

Mandelbug A fault whose activation and/or error propagation are
complex. “Complexity” can be caused by

1. a time lag between the fault activation and the occurrence
of a failure; or

2. the influence of indirect factors, i.e.,

a) interactions of the software application with its system-
internal environment (hardware, operating system,
other applications); or

b) influence of the timing of inputs and operations (rela-
tive to each other, or in terms of the system runtime or
calendar time); or

c) influence of the sequencing of operations; sequencing is
considered influential, if the inputs could have been run
in a different order and if at least one of the other orders
would not have led to a failure.

A Bohrbug is an easy-to-detect fault because it is repeatedly exposed under a
specific set of conditions; however, if the set is unknown, the fault is extremely
difficult for developers to detect. A problem with a Mandelbug is that developers
have trouble detecting it during testing because it causes an actual error only
when complicated conditions are met [30]. If developers can specify exact con-
ditions to reveal actual errors due to a Mandelbug, it becomes a Bohrbug, i.e.,
they may easily debug it with the specified conditions. Eventually, the challenge
of debugging these faults is to specify the exact conditions.

Herein, our motivation of this study is that potential faults to be detected in
Ajax Web applications are not easily executable during testing. Since the afore-
mentioned complicated conditions may arise from unexpected user operations,
Web browser behaviors, and network delays, these potential faults may have lit-
tle chance of being executed during testing. Additionally, it should be noted
that these potential faults do not always lead to actual errors being debugged
because they correspond to code violations against Ajax design patterns that are
in terms of the usability of Ajax Web applications. Therefore, we specify condi-
tions to make potential faults executable and provide developers with executable
evidence of not-easily-executable faults for validating the applications in Chapter
5. We expect that the executable evidence, if there is any, enables developers
to debug potential faults, finally enabling preventive maintenance of Ajax Web
applications.

2.5 State-Based Analysis and Testing

Many studies have been conducted on state-based analysis and testing to find
faults in Ajax Web applications; a state-based approach may be more effective
to find faults in the applications than navigation-model-based, code-coverage, or
black-box ones [52]. The challenge of a state-based approach is to determine
variables representing states of subject applications. Although Web pages can
represent states of traditional Web applications [82], Ajax technologies enable the
applications to interactively manipulate the content, structure, and presentation
of a Web page; hence, Web page snapshots at runtime can represent states of Ajax
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(a) Example of Web page

1 <html>
2 <head>
3 <t i t le>My t i t l e</t i t le>
4 </head>
5 <body>
6 <h1>My header</h1>
7 <a hr e f=””>My l ink</a>
8 </body>
9 </html>

(b) Example of HTML code

Document 

Root element: 

<html> 

Element: 

<head> 

Element: 

<title> 

Text: 

“My title” 

Element: 

<body> 

Element: 

<a> 
Element: 

<h1> 

Text: 

“My header” 
Text: 

“My link” 

Attribute: 

“href” 

(c) Example of DOM tree

Figure 2.4: Example of DOM instance

Web applications. Figure 2.4 shows examples of Web page, HTML code, and
DOM tree, as depicted in [52, Figure 1 and 2]. Herein, Marchetto et al. defined
DOM instances and effects of callback executions as states and transitions of
Ajax Web applications, respectively [52, 54]. DOM instances correspond to Web
page snapshots and can be obtained in a form of tree structure through DOM
APIs as states of the applications, whereas transitions between these states lie in
DOM manipulations that are executed in callback function associated with user
events or server responses.

The most successful work in this domain was conducted by Mesbah et al.
whose tool is called Crawljax [60, 14]. Figure 2.5 shows results of this tool2

from crawling on their portal website3. It simulates user events by finding fire-
able DOM elements, automatically executes Ajax Web applications, and extracts
a DOM-based behavioral model, as shown in Figure 2.5. Such crawling of ap-
plications can be powerful for finding DOM-related faults such as dead clickable
elements [59], detecting security vulnerabilities [8], cross-browser compatibility
testing [58, 12], determining unnecessary CSS codes [57], or automated test gen-
erations [63]. Additionally, Artzi et al. argued that their technique of prioritizing
event sequences might be helpful for Crawljax to effectively explore the state space
[7]. Consequently, these state-of-the-art studies work for effectively and efficiently
identifying ‘executable’ faults in development and testing environments.

2http://crawls.crawljax.com/salt.ece.ubc.ca/#graph
3http://salt.ece.ubc.ca/
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Figure 2.5: Screenshot of crawling results of Crawljax

However, all possible DOM instances cannot be extracted from Ajax Web
applications because interactive DOM manipulations inevitably lead to a state
space explosion. Although a dynamic analysis can be applicable for extracting
a behavioral model based on actual DOM instances from execution results of
the applications, such a DOM-based behavioral model might not contain the
application behaviors that are not easily or cannot be executed in development
and testing environments of developers. Therefore, we argue that existing DOM-
based analysis and testing does not help developers address ‘potential’ faults in
Ajax Web applications.

2.6 Motivating Example

We give the source code and screenshots of an Ajax Web application as a moti-
vating example4 in Figures 2.6 and 2.7. This is a typical Ajax Web application for
shopping on a website where (a, b) users select options for an item and (c, d) add
the item to their cart. This application has a fault that may cause duplicate or-
ders on e-commerce websites. Such duplicate order problems have been reported
in the troubleshooting of e-commerce services such as Amazon5 and eBay6. We
illustrate how developers implement and test this application using Ajax design
patterns.

First, developers implement the option selection functionality based on the
user event registration property. (a) Page load: An onload event is first eval-

4Running examples are available from http://mzw.jp/yuta/research/ex/phd/example/
5https://sellercentral.amazon.co.uk/forums/search.jspa?q=duplicate+order
6http://community.ebay.com/t5/forums/searchpage/tab/message?q=duplicate+order
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1 <html><head> . . .
2 <!−− CSS and JavaScr ipt codes loaded from ex t e rna l f i l e s −−>
3 <l ink r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=” c s s /base . c s s ” />
4 <script type=” text / j a v a s c r i p t ” s r c=” j s / jquery . j s ”></script>
5 <!−− Embedded JavaScr ipt code −−>
6 <script type=” text / j a v a s c r i p t ”><!−−//
7 /∗ User event handler r e g i s t r a t i o n ∗/
8 window . onload = setUserEventHandlers ;
9 function setUserEventHandlers ( ) {

10 document . getElementById ( ” r eg type ” ) . onchange = ca l cP r i c e ;
11 document . getElementById ( ” r eg a t t endee ” ) . onchange = ca l cP r i c e ;
12 document . getElementById ( ”reg paymeny” )
13 . addEventListener ( ” change” , c a l cP r i c e ) ;
14 document . getElementById ( ” addcart ” ) . on c l i c k = addCart ;
15 } ;
16 function c a l cP r i c e ( ) {
17 var r e g type va l u e = document . getElementById ( ” reg type ” ) . va lue ;
18 /∗ Calcu la te and d i sp l ay t o t a l p r i c e ∗/
19 } ;
20
21 /∗ User event handler s i n g l e t on ∗/
22 function addCart ( ) {
23 /∗ disableAddCard ( ) ; // proper d i s a b l i n g ∗/
24 i f ( i sVa l i d Input ( ) ) {
25 reqRunTrans ( ) ;
26 } else {
27 a l e r t ( ” Inva l i d user inputs ” ) ;
28 /∗ enableAddCart ( ) ; // proper enab l ing ∗/
29 }
30 } ;
31 function enableAddCart ( ) {
32 document . getElementById ( ” addcart ” ) . d i s ab l ed = fa l se ;
33 } ;
34 function disableAddCart ( ) {
35 document . getElementById ( ” addcart ” ) . a t t r ( d i sab led , d i s ab l ed ) ;
36 } ;
37
38 function reqRunTrans ( ) {
39 /∗ Asynchronous communication ∗/
40 jQuery . a jax ({
41 u r l : ” runTrans . php” ,
42 data : getParams ( ) ,
43 suc c e s s : succeeded
44 } ) ;
45 } ;
46 function succeeded ( ) {
47 d i s a b l eA l l ( ) ;
48 jumpToConfirm ( ) ;
49 } ;
50 . . .
51 //−−></script>
52 </head><body> . . .
53 Pr i ce : $<span id=” p r i c e ”>500</span>
54 <!−− Option s e l e c t −−>
55 <div>Type</div>
56 <select id=” reg type ”>
57 <option id=” a l l ” va lue=”350”>Al l days</option>
58 <option id=” cnf ” value=”250”>Conference</option>
59 <option id=”wsp” value=”100”>Workshop</option>
60 </select>
61 <div>Attendee . . . </ select>
62 <div>Payment . . . </ select>
63 <span>Quantity :</span>
64 <!−− I n l i n e CSS code −−>
65 <input id=” quant i ty ” style=”width :25 px ; ” . . .
66 <!−− Add to ca r t submit button −−>
67 <input id=” addcart ” type=”submit” value=”Add to Cart” />
68 . . . </body></html>

Figure 2.6: Source code of our motivating example: shopping website
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Figure 2.7: Screenshots of our motivating example given in Figure 2.6

uated when users visit the website (line 8). Then, the application calls back a
function setEventHandlers (lines 9-15). (b) Option select: When users select
options of an item, the browser evaluates an onchange event corresponding to
the option widget (lines 10-14). In the interface, users can see the total price ac-
cording to their selections, which is calculated at a callback function calcPrice

of the events (lines 16-19).
Developers then visit the website and select the options for testing whether

this functionality satisfies the user event handler registration property. Since the
application displays the correct price, this test is successful.

Next, developers iteratively implement item addition functionality. To pre-
vent the duplicate order problem, developers require the application of handling
the add-to-cart click only once. The User Action design pattern also suggests
that Ajax Web applications can prevent multiple calls of specific user event han-
dlers; we call such a property “user event handler singleton (UEHSingle)”
in Section 4.3. (c) Add to cart: Users can also add an item to their cart by
clicking a submit button labeled Add to Cart. When the button is clicked, a
click event occurs (line 14) and the application processes an addCart function
(lines 22-30). If the selections are valid (line 24), the application sends an asyn-
chronous request to run a transaction for taking inventories on the server side
(lines 25 and 38-49). Otherwise, an alert box appears for users to enter valid
inputs (lines 26-29). Finally, the application asynchronously receives a server
response (lines 43 and 46-49) and jumps to a confirmation page (line 48).

To test the user event handler singleton property of the additional implemen-
tation, developers click the button with valid inputs and see that the application
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Figure 2.8: Overview of our approach

cannot handle the click due to the immediate jump. Since a previous test case
also passed, developers finally confirm that the application expectedly runs ac-
cording to user event handler registration and singleton properties derived from
the User Action design pattern.

However, the duplicate order problem arises when users unexpectedly double-
click the add-to-cart button. It is difficult to expose this duplicate order problem
using a testing technique that leverages execution results. This is because the
application does not execute such faulty paths in a reliable network and quickly
processes the lightweight transaction. Otherwise, the duplicate order problem
will be revealed in an actual user environment. (d) Disabled add to cart: To
prevent the duplicate order problem, developers need to implement the appro-
priate enabling and disabling of the click so that users cannot interact with the
button while the transaction is running (lines 23 and 28).

2.7 Challenges and Research Questions

Figure 2.8 shows an overview of our approach in this study. We use the reengi-
neering lifecycle, as described in [16, Figure 1.1], because Demeyer et al. claimed
that there may be little difference between software reengineering and mainte-
nance. Here, reengineering consists of reverse and forward engineering, which
they defined as follows:

Reverse engineering is the process of analyzing a subject system
to identify the system’s components and their interrelationships
and create representations of the system in another form or at a
higher level of abstraction.
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Figure 2.9: Venn diagram illustrating blind spots and potential faults

Forward engineering is the traditional process of moving from
high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system.

If developers do not determine how a subject application runs, they will have dif-
ficulties in maintaining the application (a). For this situation, reverse engineering
can be used to extract a behavioral model focusing on an aspect developers are
concerned with (b). The extracted model is expected to help developers un-
derstand the application behavior (c). For forward engineering, developers have
requirements for the application at the high-level abstractions. With the aid of
the extracted model, they may identify potential faults against their requirements
(d). Then, developers may debug the identified faults in the application (e).

For Ajax Web application development and maintenance, developers are con-
cerned with interactions with the applications. However, Ajax event-driven,
asynchronous, and dynamic features make contexts of running applications un-
predictable so that developers have difficulty in determining interaction-based
behavior in the applications (a). Therefore, we propose a method for extracting
a finite state machine that represents interaction-based stateful behavior in Ajax
Web applications (b). The challenge of our extraction method lies in blind spots
of the application behaviors that may not be executable on given execution sce-
narios and environments. Figure 2.9 shows a Venn diagram illustrating the blind
spots. As we explained in Section 2.5, state-of-the-art studies rely on DOM-based
dynamic approaches and they cannot extract such blind spots from the execution
results of the applications.

We now focus on the state transitions of Ajax Web applications. Interactive
DOM manipulations are triggered when the applications handle user events or
server responses [53]. This means that the interactions, as shown in Figure 2.2,
can correspond to the state transitions of Ajax Web applications. Since the inter-
actions consist of event types, callback functions, and enable/disable statements
implemented in the source code, these constituents can be statically obtained
from the source code. Therefore, we discuss our interaction-based extraction
method relying on a static approach in Chapter 3.

In addition to reading the source code and reviewing runtime behavior of Ajax
Web applications, we expect that developers can use the extracted finite state
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machine to understand interaction-based stateful behavior in the applications
(c). Hopefully, they can find faults at the blind spots, i.e., potential faults in
the applications. Thus, we set the following research question for our extraction
method.

RQ1 Can our extraction method support developers in understanding an inter-
action-based stateful behavior containing blind spots in Ajax Web applica-
tions?

Additionally, we assume that developers implement Ajax design patterns in
Ajax Web applications for increasing usability of the applications. Even if de-
velopers intend to correctly implement the design patterns, unpredictable con-
texts might conceal faults, resulting in unexpected errors and decreasing usabil-
ity. Although we claim that the extracted finite state machine can be useful
for understanding application behavior, developers need to manually determine
its correctness against properties of the design patterns, which does not enable
them to exhaustively find potential faults. Although the NuSMV model checker
[13] is useful for verifying the correctness of nondeterministic automata, the chal-
lenge of an automated verification is that there is no generic behavior oracles
relevant to interactions implemented in Ajax Web applications. Therefore, we
try to define correct and incorrect interaction-based behaviors described in Ajax
design patterns as interaction invariants. In Chapter 4, we explain a method
towards automated verification of pattern-based interaction invariants in Ajax
Web applications.

Developers can use counterexamples from verification results, if there are any,
for identifying faulty behaviors associated with potential faults (d). Since we ex-
pect that the identified faulty behaviors work as debugging clues (e), the research
question below is added for our verification method.

RQ2 Can our verification method report the presence of potential faults in Ajax
Web applications?

However, the identified faulty behaviors, i.e., code violations against Ajax de-
sign patterns, do not always lead to actual errors being debugged because the
design patterns are aimed to improve the usability of Ajax Web applications.
Additionally, the counterexamples in the extracted finite state machine can be
spurious. Thus, it is important to validate whether actual errors are due to
potential faults. The challenge of validating the application is to specify compli-
cated conditions to reveal actual errors, such as unexpected user operations, Web
browser behaviors, and network delays. Although testing all possible scenarios in
every environment should reveal all errors, such a method would be unrealistic. It
has been pointed out that unexpected network latency may cause severe problems
in Ajax Web applications [105]; therefore, in Chapter 5, we propose a validation
method for revealing actual errors that are caused when specific network delays
are present (d).

Once our validation method succeeds in revealing the actual errors, it provides
developers with executable evidence indicating that they are not executed without
subtle network delays. With the aid of the executable evidence, developers can
address them in a similar way of executable faults that many state-of-the-art
studies have addressed (e). Therefore, we also provide the following research
question for our validation method.

RQ3 Can our validation method find executable evidence of potential faults in
Ajax Web applications?
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To answer these research questions, we carried out two case studies and discuss
their results in Chapter 6.
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Chapter 3

Extracting Interaction-Based Stateful

Behavior in Ajax Web Applications

In this chapter, we propose a method for statically extracting a finite state ma-
chine that represents an interaction-based stateful behavior in Ajax Web appli-
cations. Figure 3.1 depicts the workflow of our extraction method. It requires
the following two inputs from developers:

• A URL where developers deploy an Ajax Web application to be analyzed.

• Rules for distinguishing interaction-related HTML, CSS, and JavaScript
code fragments (distinguishing rules), as defined in Section 3.2.

Our extraction method involves a rule-based static analysis, as explained in Sec-
tion 3.3. The extracted finite state machine is an output of our extraction method.

3.1 Overview

When developing and maintaining Ajax Web applications, developers are con-
cerned with interactions implemented in the applications, as shown in Figure 2.2.
However, developers have difficulty in determining interaction-based behavior in
the applications. This is because the interactions consist of nondeterministic el-
ements in the applications, such as user events, asynchronous server responses,
and timeouts. Since these nondeterministic elements make contexts of running
applications unpredictable, developers cannot predict all possible behaviors of

Extraction method

(E1) Extending call graph with rules 

(E2) Abstracting extended call graph 

Distinguishing 

rules

URL

Abstraction 

map

Finite state 

machine(E3) Refining relationships among interactions 

Enable/Disable 

statements

End

Figure 3.1: Extraction method workflow
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running applications in spite of their greatest efforts. These difficult-to-predict
behaviors may be error-prone; therefore, it is important to support developers in
understanding interaction-based behavior in Ajax Web applications.

To find faults in Ajax Web applications, a state-based approach may be more
effective than navigation-model-based, code-coverage, or black-box ones [53, 52].
Successful extraction of stateful behavior in Ajax Web applications is possible
by regarding the document object model (DOM) [94] as states of Ajax Web
applications. Considering that the aspect of interactive DOM manipulation in
the applications, many researchers have relied on dynamic approaches to con-
struct a finite state machine representing stateful behavior of the applications
[53, 22, 4, 7, 61]. Although a dynamic analysis can be applicable for extracting
a finite state machine based on actual DOM instances from the execution results
of the applications, such a DOM-based finite state machine might not contain
“blind spots” of application behaviors that may not be executable on given exe-
cution scenarios and environments. For example, it might not contain erroneous
behavior due to communication failures if the analysis was done in a reliable net-
work. In fact, state-of-the-art studies can be used for effectively and efficiently
identifying ‘executable’ faults using the state space of the applications; however,
the challenge of identifying ‘potential’ faults at the blind spots still remains.

Although a static analysis can be used for extracting stateful behavior con-
taining such blind spots from Ajax Web applications, a DOM-based static ap-
proach might have limitations in analyzing all possible DOM instances in the
applications. This is because the interactive DOM manipulations inevitably lead
to a state space explosion. We now focus on state transitions of Ajax Web ap-
plications. Interactive DOM manipulations are triggered when the applications
handle user events and asynchronous server responses [53]; i.e., the interactions
can correspond to the state transitions of the applications. Therefore, we assume
that

Assumption 1. interactions implemented in Ajax Web applications act as trig-
gers that can change the application states.

As described in Section 2.2, the interactions consist of event types, callback
functions, and enable/disable statements implemented in the source code; hence,
all these constituents can be obtained in a static manner. However, program
parsers cannot distinguish these constituents from other code fragments. There-
fore, we first define rules for distinguishing these constituents in the source code
of Ajax Web applications in Section 3.2. In Section 3.3, we then discuss a static
method for extracting stateful behavior in Ajax Web applications under our As-
sumption 1. Our extraction method extracts a finite state machine based on all
possible interactions implemented in the source code. Such an interaction-based
finite state machine might contain erroneous behaviors due to potential faults in
Ajax Web applications.

3.2 Distinguishing Rules

Developers implement interactions in Ajax Web applications as callback func-
tions according to event firing. As we mentioned in Section 2.2, the interactions
consist of event types, callback functions, and enable/disable statements. How-
ever, pure HTML, JavaScript, and CSS parsers1 cannot distinguish them from

1We use jsoup [44], Rhino [67], and CSS Parser [15] to parse HTML, JavaScript, and CSS
codes, respectively.
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Table 3.1: Distinguishing rules

Rule class HTML attribute JavaScript element CSS property

Trigger Event handler Callback object -

Function - Event handling function -

Control Control and DOM manipulation function Display and

hidden visibility

Table 3.2: Distinguishing rule examples in XML format

Rule class Example XML description

Trigger onchange <Trigger i n t e r a c t=”User” event=”onchange” />

success
<Trigger i n t e r a c t=” Server ”

event=” suc c e s s ” r epea tab l e=” f a l s e ” />

Function
addEvent
Listener

<Function func=” addEventListener ”
event=” arg 0 ” ca l l ba ck=” arg 1 ”
ta r g e t=”PropTarget” />

Control disabled <Control a t t r=” d i s ab l ed ” d i s ab l ed=” true ” />

attr

<Control func=” a t t r ”
prop=” arg 0 ” value=” arg 1 ”
cond=”$prop==’d i s ab l ed ’ ”
d i s ab l ed=”$ value==’d i s ab l ed ’ ” />

display <Control prop=” d i sp l ay ” d i s ab l ed=”none” />

other ignorable code fragments in the source code. Therefore, we define rules
for distinguishing such interaction-related code fragments as distinguishing rules.
Tables 3.1 and 3.2 list three classes of distinguishing rules and their examples
in the XML format, respectively. The XML notations used in the distinguishing
rules are listed in Table A.1. Here, we explain these rules using code snippets, as
shown in Figure 3.2, from the source code of our motivating example described
in Figure 2.6.

3.2.1 Trigger Rule

In Ajax Web applications, the interactions are implemented at statements that
assign callback functions to event types. In Figure 3.2a, for example, devel-
opers implement the user interaction of the option selection at the reg type

element by using the onchange event type and calcPrice callback function (line
10). Our motivating example handles the success event type and calls back
the succeeded function (line 43) as the server interaction. Since the JavaScript
parser regards these event types as just property syntax elements, it cannot dis-
tinguish them from the value property (line 17). Thus, we define trigger rules
by using <Trigger> whose event attribute has HTML event handler attributes2

or JavaScript callback objects3. As for its repeatable attribute, this represents
whether the event is enabled or disabled after the applications handle it. For ex-
ample, once the application handle the success event, this event is disabled until
the jQuery.ajax function is invoked (line 40); hence, the repeatable attribute
of the success event is set to “false”. With the aid of these trigger rules, our ex-

2www.w3.org/TR/html5/webappapis.html#event-handler-attributes
3api.jquery.com/?s=callback+object

22



10 document . getElementById ( ” reg type ” ) . onchange = ca l cP r i c e ;

17 var r e g type va lu e = document . getElementById ( ” reg type ” ) . va lue ;

40 jQuery . a jax ({
41 u r l : ” runTrans . php” ,
42 data : getParams ( ) ,
43 su c c e s s : succeeded
44 } ) ;

(a) Event handler attribute and callback object being defined in trigger rules

12 document . getElementById ( ” reg paymeny” )
13 . addEventListener ( ”change” , c a l cP r i c e ) ;

(b) Event handling function being defined in function rule

32 document . getElementById ( ” addcart ” ) . d i s ab l ed = fa l se ;

35 document . getElementById ( ” addcart ” ) . a t t r ( d i sab led , d i s ab l ed ) ;

(c) Control attribute and DOM manipulation function being defined in control rules

Figure 3.2: Code snippets from Figure 2.6 for distinguishing rules

traction method finds them as event types and analyzes their callback functions
in assignment statements.

3.2.2 Function Rule

Developers also leverage JavaScript built-in or library functions for interaction im-
plementations. Figure 3.2b shows a code snippet corresponding to such the built-
in function implemented in our motivating example. This addEventListener

function attaches the calcPrice callback function at its first argument to the
change event type at its zeroth argument (lines 12-13). Such implementations
also cannot be distinguished from other function calls such as reqRunTrans (line
25). Therefore, we call functions whose arguments are event types or callback
functions as event handling functions and input API information of these
functions as function rules to our extraction method. The function rule is de-
scribed using <Function> whose func, event, callback, target attributes have
the function name, event type source, callback function source, and target el-
ement source, respectively. Our extraction method then leverages the function
rules to distinguish the interaction implementations at function calls.

3.2.3 Control Rule

Additionally, developers implement the enable/disable statements by using as-
signment or function call statements as well as the interaction implementations.
As shown in Figure 3.2c, our motivating example enables and disables the add-to-
cart button (lines 32 and 35). To distinguish these enable/disable statements, we
describe control rules by using <Control> whose attr attribute has HTML con-
trol4 or hidden5 attribute and disabled attribute has a value for disabling HTML
elements. Note that the hidden effect is typically implemented using CSS, so we

4http://www.w3.org/TR/html401/interact/forms.html#h-17.12
5http://www.w3.org/TR/html5/editing.html#the-hidden-attribute
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also describe <Control> whose prop attribute is CSS display6 or visibility7.
JavaScript functions can manipulate these HTML attributes and CSS proper-
ties. Thus, we describe cond in <Control>, which indicates whether the function
identified by func manipulates these HTML attributes and CSS properties, so
that our extraction method can distinguish enable/disable statements by using
function calls.

We define these distinguishing rules based on HTML, JavaScript, and CSS
language specifications provided by The World Wide Web Consortium (W3C);
therefore, these distinguishing rules are application independent. We also refer
to JavaScript library specifications, such as jQuery8 and Prototype9, and de-
fine library-dependent distinguishing rules. This follows the same strategy as the
Externs10 in Google Closure Compiler. This is because these libraries are power-
ful for implementing rich user experience in Ajax Web applications, but the code
is too complex to statically analyze their behavior.

Our extraction method leverages the distinguishing rules to extract all in-
teractions with Ajax Web applications in HTML, JavaScript, and CSS codes.
However, an finite state machine by combining the interactions might contain
many impossible behaviors, resulting in a state space explosion. Therefore, our
extraction method analyzes the relationships among the interactions (interaction
relationships) to more precisely extract a finite state machine according to actual
Ajax Web application behavior.

3.3 Rule-Based Static Analysis

To obtain possible interaction relationships, our extraction method statically an-
alyzes HTML, JavaScript, and CSS codes with distinguishing rules. As described
in Assumption 1, We assume that interactions with Ajax Web applications, as
shown in Figure 2.2, act as triggers that can change the states of applications;
the interaction that we focus on in this study corresponds to a function call in
response to an event firing. Hence, states and transitions in the extracted state
machines represent function calls and the relationships between them. Our rule-
based static analysis consists of three steps, as shown in Figure 3.1 (E1, E2, and
E3).

3.3.1 Source Code Retrieval

As a preliminary to the rule-based static analysis, our extraction method retrieves
HTML, JavaScript, and CSS codes. Figure 3.3 shows code snippets illustrating
code locations of these codes. It first retrieves HTML code from the Web server
by using a given URL and parses the HTML code with the jsoup [44] parser
to access all HTML elements through a DOM tree. Our extraction method
simultaneously reads XML files containing the distinguishing rules. While parsing
the HTML code, our extraction method retrieves inline, embedded, and external
JavaScript and CSS codes by analyzing their locations, as shown in Table 3.3. For
the event handler attributes, our extraction method leverages the trigger rules.
For example, in Figure 3.3a, two <script> elements correspond to external and
embedded JavaScript codes, respectively (lines 4 and 6-51). Our motivating

6http://www.w3.org/TR/css-display-3/
7http://www.w3.org/wiki/CSS/Properties/visibility
8http://jquery.com
9http://prototypejs.org/

10https://code.google.com/p/closure-compiler/wiki/ExternsForCommonLibraries
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Table 3.3: JavaScript and CSS code locations in HTML code

Language Type Code location

JavaScript

Inline Event handler attribute of HTML element

Embedded Inner HTML element of <script>

External src attribute of <script>

CSS

Inline style attribute of HTML element

Embedded Inner HTML element of <link> element

External href attribute of <link> element

4 <script type=” text / j a v a s c r i p t ” s r c=” j s / jquery . j s ”></script>

6 <script type=” text / j a v a s c r i p t ”><!−−//

50 . . .
51 //−−></script>

(a) External and embedded JavaScript code locations

65 <input id=” quant i ty ” style=”width :25 px ; ” . . .

(b) Inline CSS code location

Figure 3.3: Code snippets from Figure 2.6 for HTML and CSS code locations

example sets a stylesheet parameter with an inline CSS code (line 65), as shown
in Figure 3.3b. When detecting these JavaScript and CSS codes, our extraction
method parses them with the Rhino [67] and CSS Parser [15], and instantiates
abstract syntax trees (ASTs) and CSS rules, respectively. Thus, our extraction
method can analyze the application behavior and presentation.

3.3.2 Extending Call Graph with Rules

Since the interactions are function callbacks in response to event firing, our extrac-
tion method leverages a call graph that represents function caller-callee relation-
ships to obtain possible interaction relationships. Figure 3.4 shows an example of
function caller-callee relationships in a call graph. The function caller and callee
are represented using FunctionNode and FunctionCall elements in the ASTs.
By traversing the ASTs, our extraction method detects these elements and makes
edges between them. It also obtains conditions for calling these functions from
the ConditionExpression elements and sets them on corresponding edges. Thus,
our extraction method represents the function caller-callee relationships as a call
graph.

However, the call graph in its original form does not contain the interaction
relationships (e.g., event firing and function callbacks). Therefore, our extraction
method extends the call graph in terms of the interactions, as shown in Figure
3.5.

Binding JavaScript codes Note that the call graph has its root node regard-
less of the ASTs. For binding inline, embedded, and external JavaScript
codes as application behavior, our extraction method adds an edge from
the root node of the call graph to the AstRoot element in each AST.
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Figure 3.5: Interaction-based extensions to call graph

HTML event handler attributes For the AST from the inline JavaScript
code, our extraction method additionally sets its HTML event handler at-
tribute on the edge which is added while the binding. As a temporary ex-
ample, we give a HTML code snippet at the upper right of Figure 3.5. The
onclick and callback function call are the HTML event handler attribute
and inline JavaScript code, respectively. Hence, our extraction method sets
the onclick event handler attribute on the added edge.

JavaScript event handlers While our extraction method traverses the ASTs,
it uses distinguishing rules as a means of detecting event types, callback
functions, and enable/disable statements. Note that the enable/disable
statements are used in the last step (E3), as described in Section 3.3.4. As
interaction relationships, our extraction method adds edges from register
functions to callback functions and sets event types on the edges. For our
motivating example, setEventHandlers and addCart functions correspond
to the register and callback functions, respectively (lines 9 and 14 in Figure
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Figure 3.6: Partial example of finite state machine constructed

2.6). Our extraction method assigns the onclick event type on the edge
between them, as shown in Figure 3.5.

In this way, our extract method extends a call graph containing interaction
relationships. For this purpose, it leverages the distinguishing rules and analyzes
HTML and JavaScript codes of an Ajax Web application in a static manner.
Figure 3.6a shows a part of an extended call graph of our motivating example.
However, the extended call graph might contain many relationships irrelevant to
the interactions.

3.3.3 Abstracting Extended Call Graph

Our extraction method, therefore, abstracts elements irrelevant to the interac-
tions in the extended call graph to obtain relationships that focus on the in-
teractions. It first instantiates a map for storing the abstraction information
(abstraction map), as shown in Figure 3.7. The abstracted nodes and edges
are values in the abstraction map, and their key is a corresponding node in the
abstracted call graph. When developers want to grasp the correspondence rela-
tions between the nodes in the call graph and the elements in the source code,
our extraction method can identify the node corresponding to the element with
the aid of the abstraction map.

Our extraction method then traverses the extended call graph from its root
node. When finding a relationship without an event type and/or conditions, our
extraction method removes the relationship and the callee node from the extended
call graph. It simultaneously stores them in the abstraction map as values and
a key of the values is the caller node. If the extended call graph has other
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Figure 3.7: Abstraction map

relationships connected with the callee node, our extraction method replaces the
connections with the caller node. For example, in Figure 3.6a, our motivating
example runs from reqRunTrans to jQuery.ajax without any interactions (the
dashed box area). In this case, our extraction method abstracts this caller-callee
relationship into the corresponding invoked function of reqRunTrans, as shown
in Figure 3.6b. Thus, it can obtain possible interaction relationships from the
extended call graph.

3.3.4 Refining Relationships among Interactions

Developers can also implement enable/disable statements in Ajax Web applica-
tions, which is important for precisely extracting Ajax Web application behavior
[33]. Our motivating example enables and disables the add-to-cart button on lines
32 and 35, respectively, as the enable/disable statements. Our extraction method
leverages control rules to find these disabled attributes and their values from the
ASTs. It also finds enable/disable statements in CSS codes from statements for
manipulating the style attributes of HTML elements. Our extraction method
then associates these enable/disable statements with corresponding nodes in the
abstracted call graph by using the abstraction map. Thus, each node in the ab-
stracted call graph possesses information for our extraction method to determine
whether the interactions are enabled or disabled,

Our extraction method adds possible interaction relationships and removes
impossible ones at each node. It first determines what interactions are registered
at each node. If an interaction is repeatable and registered at a parent node,
its child nodes also handle the interaction. For example, in Figure 3.6b, our
motivating example registers the repeatable onclick at the setEventHandlers;
therefore, reqRunTrans and succeeded have it. Note that our extraction method
does not add the interaction at the branch node (addCart) because it represents
only conditions for proceeding to the child node (reqRunTrans). Our extraction
method then analyzes the enable/disable statements at each node. When an
interaction is disabled or hidden, our extraction method removes the interaction.
For example, in Figure 3.6c, our extraction method adds an onclick edge from
reqRunTrans to addCart (the upper dashed box area), but it removes such an
edge from succeeded (the lower dashed box area) because all interactions are
disabled there (line 47 in Figure 2.6).

Finally, our extraction method constructs a finite state machine based on the
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refined interaction relationships as its output. Since our extraction method relies
on a static approach, the extracted finite state machine may contain correct and
wrong behaviors of Ajax Web applications that are independent of any execution
scenarios and environments. Therefore, the extracted finite state machine can
support developers to understand the application behaviors even if they are not
easily executed on their environments, i.e., blind spots.

3.4 Use Scenario and Results on Motivating Example

Figure 3.8 shows two results of our extraction method running on our motivating
example. In the finite state machine extracted from the faulty version, as shown
in Figure 3.8a, developers might find an edge associated with the onclick event
from the Scope:960 to the addCart nodes, and identify the duplicated order
problem in our motivating example; our motivating example might handle the
double-click on the add-to-cart button, resulting in the problem. With the aid
of their identification, developers then modify our motivating example so as to
make the button disabled while asynchronously communicating with the server
(lines 23 and 28 in Figure 2.6). Developers rerun our extraction method on the
modified version and obtain another finite state machine, as shown in Figure
3.8b. In this finite state machine, they determine the removal of the edge causing
the duplicatie order problem, and finally, they can confirm that our motivating
example run as expected.

Thus, developers can use the extracted finite state machine to understand
stateful behavior in Ajax Web applications in addition to reading the source
code and reviewing runtime application behavior. Even if the application have
erroneous behaviors that are not executable in the development and testing envi-
ronments of developers, they may find such erroneous behaviors in the extracted
finite state machine and debug the applications so as to run as expected. There-
fore, our extraction method can support developers to build reliable Ajax Web
applications.
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Figure 3.8: Finite state machines extracted from our motivating example in Sec-
tion 2.6

30



Chapter 4

Verifying Pattern-Based Interaction

Invariants in Ajax Web Applications

In this chapter, we propose a method for verifying interaction-based stateful be-
havior in Ajax Web applications. As one input to our verification method, the
behavior to be verified is the extracted finite state machine discussed in Chap-
ter 3. Towards automated verification of invariants relevant to the interactions
(interaction invariants), our verification method follows the workflow shown
in Figure 4.1. Our verification requires the following additional developer input.

• Information about implemented Ajax design patterns (IADP info) for in-
stantiating interaction invariants, as explained in Section 4.3.

Our verification method consists of three steps, as shown in Figure 4.1 (V1, V2,
and V3). As outputs, our verification method either verifies the correctness of
application behavior or reports the presence of potential faults in the applications.

Verification method

(V1) Translating into SMV model 

(V2) Generating CTL formulas 

End

Satisfy?

Verifying correctness 

Extracted finite 

state machine

IADP info†

Presence of 

potential faults

Yes

No

SMV model

CTL formulas

(V3) Running NuSMV 

† Information about 

   implemented Ajax design patterns 

Figure 4.1: Verification method workflow
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Figure 4.2: Input and output of model checker

4.1 Overview

When developing Ajax Web applications, developers implement Ajax design pat-
terns [49] for increasing the usability of the applications. Although developers
intend to correctly implement the design patterns, unpredictable contexts while
running applications might conceal faults that will break properties of the design
patterns. We claim that such faults decrease usability; therefore, a technique for
verifying whether the application correctly runs according to the implemented
design patterns is required.

In Chapter 3, we present a static extraction method of stateful behavior in
Ajax Web applications to support program understanding. Although developers
may be able to simultaneously find faults relevant to the interactions using the
extracted finite state machine, the cost may not be negligible for developers to
manually and carefully determine the correctness of the behavior. Additionally,
the more interactions developers implement in the applications, the larger the
finite state machine our extraction method extracts. Therefore, we address the
automatic verification of application behavior correctness.

Towards automatic detection of faulty behavior, a model checking technique
is useful for verifying the correctness of nondeterministic automata with given
invariants. Figure 4.2 shows an overview of the model checking technique. Al-
though the nondeterministic automata representing application behavior corre-
spond to the extracted finite state machine, the challenge is that there are no
generic behavior oracles relevant to interactions, i.e., interaction invariants. De-
velopers need to define properties to be verified and correctly express them in
verification formulas; however, these tasks are difficult for developers who build
Ajax Web applications and are not familiar with a model checking technique.

We assume that developers implement Ajax design patterns in Ajax Web
applications. Since the design patterns have been collected from observations
in many real-world applications, we assume that Ajax design patterns describe
the properties of the application behaviors expected by developers (Assumption
2). Therefore, we define the properties relevant to interactions with Ajax Web
applications as the interaction invariants in Section 4.3.

Assumption 2. Ajax design patterns provide behavior oracles focused on inter-
actions with Ajax Web applications.

Consequently, our verification method automatically verifies the correctness of
the extracted finite state machines. Otherwise, our verification method identifies
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faulty interaction sequences from counterexamples in the verification results and
reports the presence of potential faults in Ajax Web applications if any.

4.2 Model Checking

Our verification method leverages a widely known model checker, NuSMV [13],
for verifying interaction invariants in a finite state machine extracted in Chapter
3. Given flexible invariants expressed as computation tree logic (CTL) formulas,
NuSMV verifies the correctness of a finite state machine described in an SMV
model. Accordingly, such a model checker is suitable for verifying the extracted
finite state machine that models nondeterministic elements of Ajax Web applica-
tions.

4.2.1 Translating into SMV Model

Our verification method first translates the extracted finite state machine into an
SMV model. Figure 4.3 shows the code of an SMV model translated from part of
the extracted finite state machine in Figure 3.6. Table 4.1 lists the definitions of
the elements in the SMV model. In this model, our verification method outputs a
module called App (lines 1-24) for representing application behavior extracted in
the finite state machine. A state variable is defined for describing invariants in
the CTL formulas (lines 2-8). Assignment statements init and next are used for
initializing the state variable to a root label and for representing state transitions
in the extracted finite state machine, respectively (lines 11 and 12-24). Another
module called main instantiates the App module to simulate application behavior
(lines 26-27).

States in the extracted finite state machine are defined as labels in the state
variable (lines 2-4). Note that an SMV model unfortunately does not allow de-
scribing an event-based state transition; therefore, our verification method also
defines labels representing events that the application handles (lines 6-7). Our
verification method is designed to deal with the event-based state transition in
such a way that the state variable is set to the event label then to the next state
label. For example, in the root state, our motivating example nondeterministi-
cally handles an onload event (line 13). When handled, our motivating example
then transits to a setEventHandlers state (line 14).

Thus, our verification method obtains the SMV model that represents the
interaction-based stateful behavior in Ajax Web applications. With the aid of this
SMV model, the NuSMV model checker can simulate the application behavior.
However, any model checker does not know correct and wrong behaviors of the
applications so that it cannot verify whether the application behavior is correct
or wrong. Additionally, there are no generic behavior oracles relevant to the
interactions, i.e., the correct and wrong behaviors. Consequently, it is difficult
for developers to define properties to be verified and to correctly express them in
verification formulas.

4.3 Pattern-Based Interaction Invariants

Herein, we consider that developers implement Ajax design pattern [49] in the
applications. It means that they want to verify whether the applications cor-
rectly run according to the implemented Ajax design patterns (IADPs) and have
information about the IADPs. Therefore, under Assumption 2, our verification
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Table 4.1: Definitions of elements in SMV model we used

SMV model element Definition

MODULE App Application module that expresses behavior

of Ajax Web application

MODULE main Main module that instantiates application module

in app variable

VAR state State in which application module is

case ... esac; Conditional branch expression of

“state = cur state : {state1, state2};” expressing

that application module nondeterministically transits

to state1 or state2 when it is in cur state

1 MODULE App
2 VAR s t a t e : {
3 −− s t a t e l a b e l s
4 root , setEventHandlers , addCart ,
5 reqRunTrans , succeeded , . . .
6 −− event l a b e l s
7 onload , c l i c k , succes s , . . .
8 } ;
9

10 ASSIGN
11 in i t ( s t a t e ) := root ;
12 next ( s t a t e ) := case
13 s t a t e = root : { root , onload } ;
14 s t a t e = onload : setEventHandlers ;
15 s t a t e = setEventHandlers :
16 { setEventHandlers , onc l i ck , . . . } ;
17 s t a t e = onc l i c k : addCart ;
18 s t a t e = addCart : reqRunTrans ;
19 s t a t e = reqRunTrans :
20 { reqRunTrans , s u c c e s s } ;
21 s t a t e = suc c e s s : succeeded ;
22 . . .
23 TRUE : s t a t e ;
24 esac ;
25
26 MODULE main
27 VAR app : App ;

Figure 4.3: Partial example of translated SMV model

method supports the aforementioned difficult tasks by generating correct verifi-
cation formulas using the information.

4.3.1 Generating CTL Formulas

Ajax design patterns contain comprehensive findings for increasing usability of
Ajax Web applications; hence, we first define invariants in terms of the interac-
tions from the findings (interaction invariants). Table 4.2 gives a fundamental
set of interaction invariants, which are derived from the category of fundamental
technology patterns in Ajax design patterns. In addition, we also define a selec-
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Table 4.2: Interaction invariants derived from Ajax design patterns

# Pattern category Ajax design pattern Property name†

1 Fundamental XMLHttpRequest Call AyncComm

2 Technology ACFRetry

3 On-Demand JavaScript SRWait

4 User Action UEHRegist

5 UEHSingle

6 Programming Explicit Submission UESubmit

7 Functionality Live Form FDValid

8 and Direct Login SeedRetrieve

9 Usability LFDisable

† Long forms and explanations of these abbreviations are listed in Table 4.3.

Table 4.3: Explanations of interaction invariants

#
Property name (Abbreviation)

Property description of expected application behavior

1
Asynchronous communication (AsyncComm)

Handling user events during asynchronous communications

2
Asynchronous communication (ACFRetry)

Retrying when asynchronous communication fails

3
Wait for server response (SRWait)

Retrieving response before calling response-dependent functions

4
User event handler registration (UEHRegist)

Registering user event handlers at page load

5
User event handler singleton (UEHSingle)

Preventing multiple calls of specific user event handlers

6
User event and submit (UESubmit)

Requiring explicit user operations before form data are submitted

7
Form data validation (FDValid)

Validating form data before submission

8
Seed retrieval (SeedRetrieve)

Retrieving seed data before login attempt

9
Login form disable (LFDisable)

Disabling login form after successful login

tive set of interaction invariants from other Ajax design pattern categories to use
them in our case study in Section 6.2. These interaction invariants consist of their
property names and descriptions; for example, the user event handler registration
(name) property explains that Ajax Web applications should register user event
handlers at page load (description).
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Table 4.4: CTL template formulas related to interaction invariants

#
Property Property

CTL template formula†
name pattern

1 AsyncComm Response
AG( app . s t a t e = $1CommFunc

−> AF EX app . s t a t e = $2UserEv)

2 ACFRetry Response
AG( app . s t a t e = $1FailEv

−> AF app . s t a t e = $2CommFunc)

3 SRWait Precedence
A[ app . s t a t e != $1WaitFunc

W app . s t a t e = $2SuccessEv ]

4 UEHRegist Precedence
A[ app . s t a t e != $1UserEv

W app . s t a t e = $2PageLoadEv ]

5 UEHSingle Absence
AG( ! ( app . s t a t e = $1PreventFunc

& EX app . s t a t e = $2UserEv ) )

6 UESubmit Existence
A[ app . s t a t e != $1SubmitFunc W

( app . s t a t e = $2UserEv &
app . s t a t e != $1SubmitFunc ) ]

7 FDValid Precedence
A[ app . s t a t e != $1SubmitFunc W

app . s t a t e = $2ValidateFunc ]

8 SeedRetrieve Precedence
A[ app . s t a t e != $1LoginFunc W

app . s t a t e = $2RetrieveFunc ]

9 LFDisable Absence
AG( ! ( app . s t a t e = $1SuccLoginFunc &

EX app . s t a t e = $2LoginEv ) )

† $1* and $2* represents template variables.

To express these interaction invariants in correct verification formulas, we
also leverage the property pattern mappings for CTL [1], which classifies raw
property specifications of a GUI, concurrency logic, and communication protocol,
into occurrence and order patterns. These property patterns contain template
verification formulas with given states and events of running applications. By
relating these property patterns to the interaction invariants, we can describe
CTL templates using the state variable in the App module in Table 4.1 for our
verification methor.

Table 4.4 lists the relationships between interaction invariants and property
patterns. For example, the user event handler registration property means that no
user event occurrences ($1UserEv) precede that of a page load ($2PageLoadEv).
Therefore, we relate the Precedence property pattern in the order pattern to
the #4 interaction invariant in Table 4.2. For the user event handler singleton
property, the Absence property pattern in the occurrence pattern is related be-
cause the absence of multiple calls ($1PreventFunc) of the user event ($2UserEv)
expresses the #5 interaction invariant in Table 4.2. Thus, developers i) select in-
teraction invariants and ii) input variables in the CTL template formulas, then
our verification method can generate correct CTL formulas using the relationships
listed in Table 4.4.

4.3.2 Running NuSMV

When developers implement and test Ajax Web applications based on Ajax design
patterns, they can input information about IADPs into a repository of our ver-
ification method (IADP info repository). Developers can input function and
event names in the source code as variables for selected interaction invariants. To
determine states corresponding to the given function and event names, our veri-
fication method leverages the abstraction map, as explained in Section 3.3. The
abstraction map contains to which states the functions are abstracted. Therefore,
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developers do not need to deeply understand how our verification method works.
By obtaining the information via the repository as input, our verification

method automatically generates correct CTL formulas expressing the interaction
invariants. Then, NuSMV traverses in the state space of the translated SMV
model and verifies whether the model satisfies the generated formulas. This veri-
fication of correctness can assure developers that the application correctly behaves
according to their intentions. Otherwise, NuSMV outputs a counterexample of
the CTL formula as a fault oracle, then our verification method describes the
counterexample on the extracted finite state machine as a faulty interaction se-
quence. Finally, our verification method automatically reports the presence of
potential faults in Ajax Web applications to the developers as output.

4.4 Use Scenario and Results on Motivating Example

In this section, we explain a use scenario of our verification method and results on
our motivating example described in Section 2.6. We assume that our verification
method can be used in the context of test-driven development, where developers
first give test cases of additional functionalities and then improve the source code
to pass the test cases. Considering such the development process, we argue that
developers first input interaction invariants of implemented Ajax design patterns
into the IADP info repository of our verification method, then, they can debug
until the invariants are verified as correct.

We now illustrate a use scenario of our verification with our motivating ex-
ample. In our motivating example, developers first implement the option select
functionality based on the user event handler registration property in Ajax de-
sign pattern. Thus, they first select the user event handler registration property
and input its variables of UserEvents and onload when implementing the op-
tion selection functionality, as shown in Figure 4.4a. Note that our verification
method interpret this UserEvents value as all user event types implemented in
the source code such as onclick and onchange. Then, our verification method
verifies the correctness of this implementation, as shown in Figure 4.4b. Next,
developers implement the item addition functionality based on the user event
handler singleton and give the IADP info for this additional functionality, as
shown in Figure 4.5a. At this time, our verification method determines that the
application behavior does not satisfy the additional invariant and reports the
presence of potential faults, as shown in Figure 4.5b. This report contains faulty
interaction sequences1 associated with the potential faults, as shown in Figure
4.6a. With the aid of the faulty interaction sequences as clues to debugging, we
expect that developers can debug the faulty version of our motivating example.
Finally, developers confirm that the application correctly runs according to the
invariants, as shown in Figure 4.6b.

1Our verification method actually outputs faulty interaction sequences in the form of slide-
show corresponding to the arrowed line drawn in Figure 4.6a.
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(a) Input of IADP info for user event registration property

Confirm correctness 
(b) Confirm correctness of user event registration property

Figure 4.4: Verification results of user event registration property in faulty finite
state machine extracted in Figure 3.8a
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In addition to registration property 

(a) Input of IADP info for user event singleton property

Presence of potential fault 
(b) Report presence of potential fault

Figure 4.5: Verification results of user event singleton property in faulty finite
state machine extracted in Figure 3.8a
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Chapter 5

Validating Ajax Web Applications Using

Delay-Based Mutation Technique

In this chapter, we propose a method for validating whether actual errors are
due to potential faults in Ajax Web applications. Figure 5.1 depicts a workflow
of our validation method. In this workflow, two of three inputs, i.e., the original
code and faulty interaction sequences, are given using our extraction and verifi-
cation methods, as described in Sections 3.3.1 and 4.3.2, respectively. Hence, our
validation method requires the following input from developers:

• Test data and oracles to test whether the potential faults cause actual errors
(See Section 5.2.1).

Our validation method is mainly divided into three steps, as shown in Figure
5.1 (M1a/b, M2, and M3). As outputs, our validation method reveals actual
errors due to delay-dependent potential faults if any.

Mutated code

End

Validation method

Actual errors

(M1a) Executing on faulty interaction sequences
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(M3) Testing mutated code
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Figure 5.1: Validation method workflow
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5.1 Overview

In Chapters 3 and 4, we investigated static methods for identifying Ajax Web
application behaviors that seem to cause errors when specific conditions are met;
for example, the duplicate order problem in our motivating example because
of an unexpected double-click on the add-to-cart button. Although developers
can use our extraction and verification methods for identifying the presence of
“potential faults” that seem to cause actual errors if executed, they need to
confirm whether the potential faults are actually executable. Testing all possible
scenarios in every environment should reveal all errors; however, such a method
would be unrealistic.

Therefore, we present a mutation-based validation method for specifying con-
ditions to reveal actual errors due to these potential faults. Our validation method
obtains the faulty interaction sequences as input from our verification method and
tries to find executable evidence of the potential faults. However, our validation
method may not easily execute Ajax Web applications on the faulty interaction
sequences because a specified environment does not meet specific conditions to
reveal actual errors due to the potential faults. Since Zheng et al. pointed out
that an expected network latency may cause severe problems in Ajax Web appli-
cations [105], we assume that

Assumption 3. an unexpected network latency may make potential faults in
Ajax Web applications executable.

To emulate an unexpected network latency, we define synchronous and asyn-
chronous delay-based mutation operators, as described in Section 5.2.2. Although
a program mutation technique is commonly used for injecting artificial faults [17],
we leverage the technique to allow our validation method to make potential faults
executable in the specified environment. This is because our mutation operators
change the nonfunctional aspects of Ajax Web applications, but the applications
can handle specific server responses after a given delay time has elapsed. We
expect that testing the mutated source code with the given test data and oracles
will reveal actual errors. Thus, our validation method provides developers with
executable evidence of not-easily-executable faults during testing, i.e., subtle net-
work delays are required for revealing actual errors. In addition to outputs from
our extraction and verification methods (i.e., an extracted finite state machine
and identified faulty interaction sequences), developers can use revealed actual
errors from our validation method to debug the original source code of Ajax Web
applications.

Compared with our extraction and verification methods, the novelty of our
validation method lies in revealing actual errors due to potential faults in Ajax
Web applications. Since Ajax design patterns are aimed to improve the usability
of Ajax Web applications, code violations against the design patterns do not
always lead to actual errors being debugged. Additionally, the faulty interaction
sequences that are identified are counterexamples in the extracted finite state
machine. Counterexamples in an abstract model can be spurious; therefore, it is
important to reanalyze them in an actual system [98]. Consequently, we argue
that the novelty of our validation method is that it helps developers validate Ajax
Web applications.
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5.2 Delay-Based Program Mutation

The potential faults reported by our verification method can be exposed under
a specific set of conditions but have little chance of being found if the set is
unknown. A problem with such faults is that developers have trouble detecting
them during testing because they cause errors only when complicated conditions
are met [30]. As for Ajax Web applications, despite concerted efforts by devel-
opers, they have difficulty in specifying unexpected conditions in unpredictable
contexts of a running application, such as subtle network delays. Therefore, the
challenge of our validation method is to specify complicated conditions to reveal
actual errors due to potential faults in testing environments of developers be-
fore users encounter erroneous behaviors in the applications. Consequently, our
validation method is designed to validate whether Ajax Web applications run as
expected on faulty interaction sequences that might not be easily executable in
the given environments.

Figure 5.1 depicts the three-step process that our validation method uses for
validating Ajax Web applications. Our validation method initially executes Ajax
Web applications on the faulty interaction sequences identified by our verification
method (M1a). If the potential faults associated with these sequences are not
easily executable, our validation method mutates the source code until the Ajax
Web applications do execute the potential faults (M2 and M1b). Then, devel-
opers test for the unexpected behavior due to the potential faults by using the
mutated applications (M3). Additionally, our validation method classifies poten-
tial faults into executable, delay-dependent potential, and *-dependent potential
faults, which are defined below.

5.2.1 Executing Faulty Interaction Sequences

Because executing Ajax Web applications results in actual errors if there are any,
our validation method first attempts to execute the applications in accordance
with the identified faulty interaction sequences (M1a in Figure 5.1). For this
execution, our validation method require that developers implement test cases
with test data and oracles by using Selenium WebDriver [86] and JUnit [45].
Figure 5.3 shows an example of the test case for the duplicate order problem in
our motivating example. This test case first instantiates the Firefox Webbrowser
at the setupBrowser method annotated with @Before (line 5-7). Then, at the
testDuplicateOrder method annotated with @Test (lines 10-20), it open our
motivating example using URL (line 11), emulates user action of the click on the
add-to-cart button (line 13), and check whether or not the button is enabled (line
14). If our motivating example can handle the duplicate order, this test case fails
(line 15). Finally, it quit the browser at the quitBrowser method annotated with
@After (line 23-25). Thus, our validation method uses such test cases in order
to make its execution as automated as possible.

Our validation method then obtains the executed interaction sequences from
the execution results. If the executed interaction sequences and faulty interaction
sequences are identical, our validation method determines that potential faults in
the applications are executable faults against the implemented Ajax design
patterns. As described in Section 2.5, executable faults can be revealed through
state-of-the-art studies.

If the potential faults are not executed, our validation method focuses on the
differences between the faulty interaction sequences and the executed interaction
sequences. Differences may occur because Ajax Web applications cannot handle
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Figure 5.2: Executed interaction sequence and branch point

1 WebDriver d r i v e r ;
2 S t r ing URL = ”http : / / . . . ” ;
3
4 @Before
5 public void setupBrowser ( ) {
6 d r i v e r = new Fi r e f oxDr iv e r ( ) ;
7 }
8
9 @Test

10 public void t e s tDup l i ca teOrder ( ) {
11 d r i v e r . get (URL) ;
12 try {
13 d r i v e r . f indElement (By . id ( ” addcart ” ) ) . c l i c k ( ) ;
14 i f ( d r i v e r . f indElement (By . id ( ” addcart ” ) ) . i sEnabled ( ) ) {
15 f a i l ( ” dup l i a t e order ” ) ;
16 }
17 } catch ( Exception e ) {
18 e . pr intStackTrace ( ) ;
19 }
20 }
21
22 @After
23 public void quiteBrowser ( ) {
24 d r i v e r . qu i t ( ) ;
25 }

Figure 5.3: Example of test cases using Selenium WebDriver and JUnit
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Figure 5.4: Synchronous delay mutation operator

certain interactions in faulty interaction sequences. The solid and dashed arrows
in Figure 5.2 respectively represent faulty interaction sequence and its executed
interaction sequence. At the meshed circle in the figure, WebDriver emulates the
onclick user action, but our motivating example actually handles the success

event because of an immediate server response. However, the ability to manip-
ulate the timing of the applications handling the interactions allows Ajax Web
applications to run as faulty interaction sequences. Thus, a mutation technique
can be used to manipulate the timing.

5.2.2 Applying Delay-Based Mutation Operators

By mutating the source code of the Ajax Web applications, our validation method
enables them to run on faulty interaction sequences in a given environment (M2
in Figure 5.1). We assume that an unexpected network latency might allow po-
tential faults to be executable and define the following two delay-based mutation
operators, as shown in Figure 5.4 and Figure 5.7.

Synchronous Delay Mutation Operator

A Web browser parses the HTML code from top to bottom while loading a Web
page. When the browser finds a script element whose src attribute has the loca-
tion of an external JavaScript file, it begins loading the JavaScript file. For exam-
ple, in Figure 5.4a, such an external JavaScript file corresponds to myscript.js.
Because the JavaScript code can dynamically manipulate the Web page content,
the browser blocks render the remaining HTML code until the JavaScript file is
completely loaded. Therefore, script elements can be implemented at the bottom
of the HTML code in order to render all page elements as fast as possible. This
is a well-known way to increase the perceived performance [89].

Loading a JavaScript file at the improper time may cause an actual error.
Figure 5.5a shows brief code fragments to explain our synchronous delay mutation
operator. In this application, developers implement the handleClick function in
the handleClick.js JavaScript file and set the function as the onclick event
handler of the button element. Following common practice, the script element is
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40 <button onc l i c k=” handleCl i ck ( ) ” />
41 . . .
42 <script type=” text / j a v a s c r i p t ” s r c=” handleCl i ck . j s ” />

(a) Synchronous communication

40 <button onc l i c k=” handleCl i ck ( ) ” />
41 . . .
42 <script s r c=” text / j a v a s c r i p t ”
43 s r c=”http : / / . . . / DelayedRequest . j s . php? m i l l i s e c ond=3000” />
44 <script type=” text / j a v a s c r i p t ” s r c=” handleCl i ck . j s ” />

(b) Artificially delayed synchronous communication

Figure 5.5: Loading a JavaScript file with improper timing

1 <?php
2 $ s l e e pM i l l i s = intval ($ GET [ ’ m i l l i s e c ond ’ ] ) ;
3 u s l e ep ( $ s l e e pM i l l i s ∗ 1000) ;
4 header ( ” content−type : app l i c a t i o n / j a v a s c r i p t ” ) ;
5 echo ’ ’ ;
6 ?>

Figure 5.6: DelayedRequest.js.php: mock server-side script

then implemented at the bottom of the HTML code. However, an unexpected
network latency may delay loading of the JavaScript file. The application cannot
respond to the onclick event occurrence because this scenario allows a user to
click a button even though the browser has yet to register the event handler.

Figure 5.4b illustrates the aforementioned synchronous communication de-
layed by our validation method. To emulate a JavaScript file loading delay
due to an unexpected network latency, our validation method inserts an arti-
ficial script element whose src attribute is located in our server-side program
(lines 42-43 in Figure 5.5b). Figure 5.6 depicts our server-side program called
DelayedRequest.js.php. After the artificial script element sends an HTTP
request, this program then sends an HTTP response with a given delay time,
causing a synchronous delay. This HTTP response consists of header and body
sections in which are set “content-type: application/javascript” and an empty
string, respectively. In this manner, our validation method can manipulate the
timing of handling interactions relevant to page loading, such as an onload event.

Asynchronous Delay Mutation Operator

The most significant feature of Ajax Web applications is the asynchronous com-
munications between the client and server, as shown in Figure 5.7a. However,
an unexpected network latency can significantly impact this feature. Unlike a
synchronous delay, an unexpected network latency does not inhibit rendering of
Web page content or handling of user interactions. Consequently, it is extremely
difficult to consider all possible states where Ajax Web applications may have to
handle a delayed asynchronous server response.

To emulate a handling delay with an asynchronous server response, our vali-
dation method rewrites the corresponding JavaScript code fragment by using our
wrap function, DelayedRequest, as shown in Figure 5.8. Our validation method
finds a target function for an asynchronous server request in the original code and
parses its arguments, such as URL, query string, and callback function. Instead
of the original code, our validation method inserts an instantiation statement of
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Figure 5.7: Asynchronous delay mutation operator

40 jQuery . a jax ({ /∗ tage t func t i on ∗/
41 u r l : ” runTrans . php” , /∗ URL ∗/
42 data : getParams ( ) , /∗ query s t r i n g ∗/
43 suc c e s s : succeeded /∗ ca l l b a ck ∗/
44 } ) ;

(a) Asynchronous communication

40 new DelayedRequest ( 3 000 ) . applyFunction (
41 jQuery . ajax , /∗ t a r g e t func t i on ∗/
42 ”runTrans . php” , /∗ URL ∗/
43 getParams ( ) , /∗ query s t r i n g ∗/
44 succeeded /∗ ca l l ba ck ∗/
45 ) ;

(b) Artificially delayed asynchronous communication

Figure 5.8: Code snippet from Figure 2.6 for asynchronous delay mutation

the DelayedRequest with a given delay time, e.g., 3000 msec. As illustrated in
Figure 5.7b, the DelayedRequest sends the same asynchronous server request as
the original one, but does not invoke the callback function even if a response is im-
mediately received. After the given delay time has elapsed, the DelayedRequest
invokes the callback function.

Thus, our mutation operators mutate the source code of Ajax Web applica-
tions in order to artificially manipulate the timing of handling interactions with
the applications. It should be noted that our mutation operators do not change
the functionalities of the applications. This is because the applications can still
handle a specific interaction after the given delay has elapsed.

To determine where to apply our mutation operators, our validation method
searches for a branch point between the faulty interaction sequences and exe-
cuted interaction sequences, such as the meshed circle in Figure 5.2. The branch
point may prevent Ajax Web applications from running on the faulty interac-
tion sequences. The mutation operators are then applied to an interaction in
the executed interaction sequences at this point, e.g., the success event handler.
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Figure 5.9: JSPreventer use scenario

Even if the server immediately responds, our motivating example does not han-
dle the server response within the delay period. By iterating M1b and M2 in
Figure 5.1 until the executed interaction sequences equal the faulty interaction
sequences, our validation method artificially sets up conditions in which poten-
tial faults can be exposed. Finally, it classifies the potential faults that become
executable by applying our mutation operators as delay-dependent potential

faults. Thus, our validation method provides developers with executable ev-
idences of the delay-dependent potential faults which are not-easily-executable
faults because they are not executed without subtle network delays.

However, not all applications can be mutated to produce identical executed
interaction sequences and faulty interaction sequences. Our validation method
classifies these potential faults as *-dependent potential faults, which might
cause actual errors for reasons other than delayed injection.

5.2.3 Testing Mutated Code

Because developers implement Ajax design patterns according to their intentions,
we assume that they can also implement test oracles to verify whether the pat-
terns are correctly implemented in Ajax Web applications or not. With such
test oracles, our validation method can determine whether the mutated code
has passed the test (M3 in Figure 5.1). If the code fails a test, developers can
determine the actual errors from the test results.

Our validation method outputs actual errors in addition to a finite state ma-
chine and faulty interaction sequences from our extraction and verification meth-
ods. We assume that these outputs will help developers debug the original source
code because they allow the complex behaviors of Ajax Web applications to be
understood, the faulty behaviors of a finite state machine to be identified, and
unexpected behaviors due to potential faults to be observed. Thus, developers
can use our validation method to prevent actual errors due to potential faults in
Ajax Web applications.
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5.3 Use Scenario and Results on Motivating Example

Figure 5.9 illustrates a use scenario of JSPreventer, which includes our extraction,
verification, and validation methods, with the results of our motivating example.
JSPreventer is applicable in the context of iterative and incremental development
[48]. In fact, developers often select a simplified and rapid iteration development
life cycle [36].

The scenario involves five steps: (i) the implemented Ajax design pattern
information (IADP info) is initially inputted to JSPreventer; (ii) JSPreventer
suggests faulty interaction sequences in the applications against the IADP info
and reports the presence of potential faults. (iii) Developers provide test data and
oracles to JSPreventer; (iv) to reveal unexpected runs, JSPreventer mutates and
tests the applications. In this step, if the potential faults become to be executable
with subtle network delays, we assume that the executable evidences and the
revealed actual errors can be of help in validating and debugging the applications;
(v) through iterative development, highly reliable Ajax Web applications can be
released.
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Chapter 6

Evaluation

We conducted case studies to evaluate the usefulness of our proposed methods
implemented in a tool called JSPreventer. As described in Section 2.7, we answer
the following research questions.

RQ1 Can our extraction method support developers in understanding an inter-
action-based stateful behavior containing blind spots in Ajax Web applica-
tions?

RQ2 Can our verification method report the presence of potential faults in Ajax
Web applications?

RQ3 Can our validation method find executable evidence of potential faults in
Ajax Web applications?

We first discuss the preliminary case study we conducted on sample Ajax
Web applications in Section 6.1. This case study involved seven participants and
demonstrated that they had difficulties in understanding interaction-based state-
ful behavior in the sample application. In Section 6.2, we discuss an additional
case study on real-world Ajax Web applications to evaluate whether JSPreventer
could reveal actual errors due to potential faults in real-wold applications. We
then discuss the threats to validity in our case studies in Section 6.3. Finally, we
describe the limitations of JSPreventer in Section 6.4.

6.1 Preliminary Case Study

We conducted a preliminary case study to evaluate interaction-based behavior in
Ajax Web applications that are difficult for developers to understand and a finite
state machine extracted with our extraction method that is helpful for them to
find erroneous behaviors in the applications. In this case study, we invited seven
computer science students (P#1, P#2, P#3, P#4, P#5, P#6, and P#7) to participate.

6.1.1 Subject Applications

For this preliminary case study, we implemented a sample Ajax Web application,
as shown in Figure 6.1. This sample application has the following two function-
alities and functions as a bulletin board like Twitter1.

Write functionality This Web page initially displays a text area where users
enter their “writings”, which correspond to tweets in Twitter. After users

1https://twitter.com/
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Figure 6.1: Screenshots of sample Ajax Web application

first enter in the text area, it then displays a submit button and the length
of the string. Next, when users change their writings, it enables and disables
the submit button depending on whether the length is less than the given
maximum one and is not zero. At the same time, it updates the displayed
length. When users submit their writings, this Web page asynchronously
sends the string to a server. On the server side, this application receives
and stores the string in a file.

Watch functionality Another Web page is for displaying the writings. Once
this page is loaded, it creates an update bar, which handles mouse click
events. It also asynchronously inquires the server on whether there are new
writings. If the server responds that new ones exist, this page displays the
update bar. When users click the bar, this page asynchronously retrieves
the new writings from the server. Once this page updates the new ones,
it hides the bar. Otherwise, it recursively sends asynchronous messages to
check the new ones at given intervals.

6.1.2 Evaluation Methodology

To evaluate whether the participants understood interaction-based stateful be-
havior in the sample application, we injected faults relevant to interactions with
the sample application, as shown in Table 6.1. These faults caused the fol-
lowing erroneous behaviors in the sample applications (Error#1, Error#2, and
Error#3). If the participants could identify these erroneous behaviors, we deter-
mined that they could understand the application behavior.

Error#1 The write functionality initially enables the submit button. Since
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Table 6.1: Faults deployed in sample Ajax Web applications

Faults due to Faults due to

Interaction improper implementation no implementation

User Fault#3 Fault#1

Server Fault#4 Fault#6

Self Fault#5 Fault#2

the text area does not have any user inputs at that time, developers should
prevent users from clicking the submit button (Fault#1) at the loaded
time (Fault#2). If missing this execution scenario, the participants cannot
identify this erroneous behavior; otherwise, they may find this ‘executable’
erroneous behavior by reviewing runtime application behavior.

Error#2 This functionality also disables the text area and submit button when
users send their writings to prevent changing the content and multiplying
submissions. If this functionality fails to communicate with the server, this
text area is permanently disabled; hence, developers should release the text
area (Fault#3) regardless of the results of the communication (Fault#4).
This erroneous behavior cannot be revealed in reliable network conditions;
therefore, the participants had trouble identifying this erroneous behavior
because it may have been a bind spot in the sample application.

Error#3 The watch functionality uses timeouts to periodically check the oc-
currence of writings. However, this functionality may fail in the first com-
munication with the server to inquire of the existence of new writings.
Users cannot operate the sample application at all. This is because this
functionality sets the timeouts for sending the inquiry messages only when
it succeeds in the first communication; as a result, nothing happens if the
first communication fails. Therefore, developers should implement a behav-
ior of sending the inquiry messages after the given elapsed time (Fault#5)
in case of communication failure (Fault#6), as well as communication suc-
cess. As with Error#2, this erroneous behavior cannot be revealed if in
localhost network environments.

We describe the experimental procedure in this case study as follows.

1. First, we gave the source code of the sample application. At this time, we
taught behaviors of the server-side programs, which are out of the scope of
this study, such as receiving writings from users and storing them in a file
on the server-side.

2. Second, the participants tried to find erroneous behaviors relevant to the
interactions of the sample application by reading the source code and re-
viewing the runtime application behavior for 30 minutes.

3. Next, we provided finite state machines extracted from these two function-
alities with our extraction method.

4. Then, the participants tried to find erroneous behaviors for an additional
30 minutes.
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Table 6.2: Results of faults participants found in sample application

Fault#1 Fault#2 Fault#3 Fault#4 Fault#5 Fault#6

P#1 – – 3 – 3 –

P#2 3 3 – – 7 7

P#3 3 3 7 – – 7

P#4 7 7 3 3 7 –

P#5 3 3 7 7 7 7

P#6 3 3 – – – 3

P#7 3 3 – – – –

– indicates that participants found faults only with the source code
3 indicates that participants found faults with the extracted finite state ma-
chines

7 indicates that participants did not find faults

Table 6.3: Results of errors that participants identified in sample application

Participants identified with Error#1 Error#2 Error#3

source code and runtime behavior 1 3 1

extracted finite state machine 5 2 2

Participants could not identify 1 2 4

5. Finally, the participants reported erroneous behaviors found with or with-
out the aid of the extracted finite state machines.

In this case study, we asked the participants to provide their heuristic feedback
about the extracted finite state machines in free format.

6.1.3 Results

Tables 6.2 and 6.3 list the results of faults and errors the participants found
and identified in the sample application, respectively. Additionally, we collected
feedback from the participants as follows.

• The extracted finite state machines provided suspicious clues and helped
the participants find erroneous behaviors.

• Although code fragments relevant to the interactions were dispersed in the
source code (for example, HTML inlines and external JavaScript files), the
participants could receive a quick overview of interaction-based stateful
behavior in the sample application with the aid of the extracted finite state
machines.

• The extracted finite state machines were helpful for the participants to
reproduce suspicious behaviors they found from the runtime application
behavior.

• The participants pointed out the scalability of our extraction method for
manually checking whole of the extracted finite state machines.
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• The participants could intuitively determine the lack of necessary state
transitions in the sample application. However, it was also pointed out
that, if there was a state where many state transitions were concentrated,
the participants mistook it as a central part of the sample application be-
havior. This means that the extracted finite state machines did not always
match an aspect the participants wanted to focus on. The participants also
claimed that our extraction method might divide more states than what
they imagined.

• The participants had difficulties in determining code fragments in the source
code corresponding to elements of the extracted finite state machines.

• The participants suggested that our extraction method should separately
deal with user, server, and self interactions in the extracted finite state
machines.

6.1.4 Discussion

We discuss the difficulties in understanding interaction-based behavior in Ajax
Web applications and the usefulness of our extraction method based on the results
of our preliminary case study.

Support Understanding Ajax Web Application Behavior (RQ1)

In our preliminary case study, the participants identified errors in the sample
applications with the aid of finite state machines extracted with our extraction
method. From the results described in Table 6.3, only one of seven participants
identified Error#1 by using the source code and runtime behavior. Although this
error was executable in the experimental environment, six of them missed the ex-
ecution scenario causing this error. Five of the participants tried to execute the
sample application on execution paths in the extracted finite state machine and
identified this error by using the extracted finite state machine. Thus, if devel-
opers miss execution scenarios in which Ajax Web applications cause erroneous
behaviors, the extracted finite state machine may help them determine how to
execute the applications for finding erroneous behaviors.

Error#2 and Error#3 were not executable in the experimental environments;
i.e., potential faults in blind spots. Although we argue that such potential faults
are extremely difficult for developers to find, more participants could identify
these errors only with the source code and runtime behavior than those who
identified Error#1. This is because Error#2 and Error#3 were caused by asyn-
chronous communication failures which the participants had the most concerns
when they tried to find faults. However, even if the participants carefully re-
viewed the asynchronous communication failures, most could not identify these
errors; hence, we want to make sure of our aforementioned argument. Our extrac-
tion method gave the finite state machine to the participants; therefore, in both
cases of Error#2 and Error#3, two of them could identify these errors. From
these results, we confirm that our extraction method can support developers in
understanding an interaction-based behavior containing blind spots in Ajax Web
applications.

The participants mentioned the difficulties in determining interaction-based
stateful behavior in Ajax Web applications. One of the difficulties lies in that code
fragments relevant to the interactions are dispersed in the source code. In spite
of the fact that the sample application was small, the participants struggled to
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determine the complex behavior that came from these code fragments. Therefore,
our extraction method is useful for developers because it analyzes these fragments
and models the application behavior in the form of a finite state machine. In fact,
the participants said that they could improve their understanding of application
behavior.

Since we focused on the interactions as state transitions of Ajax Web appli-
cations, our extraction method may not extract a suitable finite state machine
for concerns of developers. Additionally, some participants claimed that it was
difficult to search corresponding code fragments when they found suspicious clues
and erroneous behavior in the applications. While we were observing the activ-
ities of the participants, we found that they were confused with the unsuitable
structure and layout of the extracted finite state machines. Thus, a remaining
issue of our extraction method is that developers need to carefully read the ex-
tracted finite state machine. Therefore, our verification and validation methods
are useful because they automatically identify potential faults and reveal actual
errors so that developers do not need to deeply understand how our extraction
method works.

6.2 Case Study on Real-World Applications

To evaluate whether or not JSPreventer could reveal actual errors due to potential
faults in Ajax Web applications, we additionally conducted a case study on real-
world applications.

6.2.1 Subject Applications

Table 6.4 lists the subject Ajax Web applications used in this case study. To find
real-world Ajax Web applications, we leveraged NerdyData2, which provides a
search engine for the source code on websites. We needed applications in which
Ajax design patterns were implemented to verify the properties of the design
patterns; therefore, we searched using keywords relevant to Ajax design patterns.

2020m We searched for “login controller.js” where James Dam3 implemented
the Direct Login pattern4. The optical accessory supplier website was found
at the top of the search results.

UCDChina and ESA In addition, we searched for “onblur=checkInput” and
“onsubmit=validate”, which are representative of the Live Form pattern.
The Live Form pattern suggests that Ajax Web applications should check
form data before making a submission. From the search results, we found
Chinese and British companies’ portal websites.

6.2.2 Experimental Setup

Our case study experiments were conducted on a 64-bit Mac OS X 10.9.2 ma-
chine with an Intel Core i5 (2.3 GHz) and 16 GB of memory. The experimental
procedure is as follows:

1. We first obtained HTML, CSS, and JavaScript source code files by using
the completely-save-web-page functionality in Mozilla Firefox.

2http://nerdydata.com
3James Dam (Internet Archive): goo.gl/S47AVV
4Ajax Login System Demo (Internet Archive): goo.gl/yCcxtN
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Table 6.4: Subject Ajax Web applications

Subject URL
Keyword

(Ajax design pattern)

2020m 2020m.com
login controller.js

(Direct Login)

UCDChina ucdchina.com
onblur=checkInput

(Live Form)

ESA www.easyservicedapartments.com
onsubmit=validate

(Live Form)

2. We then leveraged Code Beautifier5 to count lines of these codes, as
listed in Table 6.5 (HTML, CSS, and JavaScript). The 1K-10K lines of
code range represents medium-largish Ajax Web applications. Note that
only client-side source code could be obtained; therefore, we implemented
mock server-side scripts in PHP.

3. Next, we used our extraction method to extract the finite state machine
from each subject. Table 6.5 lists the extraction time (Te) and the numbers
of states and transitions of the finite state machine (#states and #trans).

4. To verify the correctness of the extracted finite state machines by using our
verification method, we determined interaction invariants to be verified and
corresponding variables in the subject applications, as listed in Table 6.6.
Since we did not know the intent of the original developers, we determined
the invariants based on the search keywords and source code.

In the source code of all the subjects, we found implementations of asyn-
chronous communications and page load event handlers; jQuery.get6 and
jQuery.post7 are representative functions for asynchronous communica-
tions and the jQuery.ready8 event is usually implemented in order to at-
tach all other event handlers. Therefore, we determined that Invariants #1
(XMLHttpRequest Call) and #2 (User Action) should be satisfied in all
the subjects. Additionally, considering the search keywords, we also deter-
mined that Invariants #4 and #5 (Direct Login) in 2020m and Invariant
#3 (Live Form) in UCDChina and ESA should be satisfied.

5. Our verification method then verified all the invariants for each subject and
reported the verification time (Tv in Table 6.7) and the verification results
(Resultv in Table 6.7).

6. If the verification result was incorrect, our validation method executed the
classification workflow shown in Figure 5.1. We set the delay time to be 3
seconds. Additionally, we provided all the necessary test data and oracles,
such as the correct username and password, for successful logins in 2020m.
Finally, our validation method classified the potential faults that caused
incorrect verification results into executable, delay-dependent potential, or

5http://ctrlq.org/beautifier/
6http://api.jquery.com/jQuery.get/
7http://api.jquery.com/jQuery.post/
8http://api.jquery.com/ready/
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Table 6.5: Size of subject Ajax Web applications and extracted finite state ma-
chines

Subject HTML CSS JavaScript #state #trans Te (sec)

2020m 188 420 2468 15 57 9.434

UCDChina 1978 898 880 32 508 14.166

ESA† 4751 964 3523 34 602 17.705

† Easy serviced apartments ESA had an implementation for asynchronous com-
munications by directly manipulating the XMLHttpRequest object [68]. Since
our extraction method was not designed to analyze a dataflow of the object,
we replaced this implementation with the equivalent function call by using
jQuery which was originally loaded in ESA.

Table 6.6: Determined interaction invariants for subject Ajax Web applications

Subject # Interaction invariant $Var1‡ $Var2‡

2020m 1 AsyncComm jQuery.post UserEvents

4 UEHRegist UserEvents ready

8 SeedRetrieve validateLogin getSeed

9 LFDisable window.location.replace submit

UCD 1 AsyncComm jQuery.post UserEvents

China 4 UEHRegist UserEvents ready

7 FDValid sendMail checkInput

ESA 1 AsyncComm jQuery.get† UserEvents

4 UEHRegist UserEvents ready

7 FDValid onsubmit validate

† As described in Table 6.5, we replaced an implementation for asynchronous
communications using XMLHttpRequest object with jQuery.get in ESA.

‡ $Var1 and $Var2 correspond to $1* and $2* in Table 4.4.

*-dependent potential faults. The Resultc column in Table 6.8 corresponds
to these classification results. JSPreventer also reported the execution,
mutation, and testing times (Tx, Tm, and Tt in Table 6.8).

7. In addition, we conducted comparative experiments with Crawljax, which
is a state-of-the-art tool for finding faults in Ajax Web applications, as
described in Section 2.5. The default setting of Crawljax could not find any
delay-dependent potential faults in the subjects.

6.2.3 Results and Discussions

Automated Verification (RQ2)

Our verification method could semi-automatically verify correct and incorrect
application behavior. As inputs to our verification method, we selected the in-
teraction invariants and entered their template variables listed in Table 6.6 for
the subject applications, which might require additional tasks for developers. To

57



Table 6.7: Verification results of subject Ajax Web applications

Subject # Interaction invariant Tv (msec) Resultv

2020m 1 AsyncComm 65 Correct

4 UEHRegist 84 Fault

8 SeedRetrieve 96 Fault

9 LFDisable 86 Fault

UCDChina 1 AsyncComm 95 Correct

4 UEHRegist 293 Fault

7 FDValid 235 Fault

ESA 1 AsyncComm 111 Correct

4 UEHRegist 254 Fault

7 FDValid 194 Fault

Table 6.8: Validation results of subject Ajax Web applications

Subject # Invariants Tx (sec) Tm (sec) Tt (sec) Resultc
†

2020m 4 UEHRegist 9.643 0.039 11.868 *dPF

8 SeedRetrieve 8.147 0.116 8.175 DdPF

9 LFDisable 8.553 - - *dPF

UCDChina 4 UEHRegist 11.677 0.183 11.816 DdPF

7 FDValid 9.692 - - EF

ESA 4 UEHRegist 10.520 0.133 10.335 DdPF

7 FDValid 15.307 0.208 14.965 *dPF

† EF, DdPF, and *dPF in the column of Resultc represent executable, delay-
dependent potential, and *-dependent potential faults, respectively.

mitigate the additional tasks, we plan to define language-level semantics of Ajax
design patterns towards full-automated verification [9].

Table 6.7 lists results of our verification method. In 2020m, UCDChina, and
ESA, our verification method reported the presence of potential faults which
indicated that the subject applications violated the #4 UEHRegist property. Al-
though these violations indicated that user events might be handled before page
load completions, the immediate page load in our testing environment concealed
the faulty behavior. We then searched the user events on faulty interaction
sequences suggested by our verification method and found them in the HTML
source code of the subject applications. These implementations conformed to un-
desirable ones described in the User Action Ajax design pattern. We debugged
them according to a solution suggested in the design pattern so that our verifi-
cation method could output the correct results.

Our verification method also reports the presence of potential faults that
indicated that the login functionality in 2020m might not work properly; 2020m
might send account information without the seed data for password hashing (#8
SeedRetrieve) and might redundantly handle the login attempts (#9 LFDisable).
Since our reliable network allowed 2020m to retrieve the seed data and to jump
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to the logged-in page immediately, these faulty behaviors were also concealed.
We tested UCDChina and ESA to run on the faulty interaction sequence for
#7 FDValid. Although we observed that UCDChina actually handled the form
submission without any user inputs in the form, ESA did not run on the faulty
interaction sequence.

From the results of our case studies, we argue that our verification method
could report the presence of potential faults that were concealed in our testing
environment but would be executable in an actual user environment. Our re-
maining issue is to investigate whether potential faults will actually cause errors
in Ajax Web applications. Therefore, our validation method allows Ajax Web
applications to run on faulty interaction sequences suggested by our verification
method.

Revealing Actual Errors due to Delay-Based Potential Faults (RQ3)

Our validation method could classify potential faults reported by our verification
method into executable, delay-dependent potential, and *-dependent potential
faults. As indicated in Table 6.9, it found actual errors in the subjects. We
reviewed the source code of the subjects and confirmed that the actual errors
could be exposed.

In 2020m, users could not log in even with their correct username and pass-
word because 2020m sent the login request with the initial value at the declaration
statement of the seed variable. For secure password hashing, 2020m used the
MD5 algorithm to a value obtained by adding the seed variable to the user pass-
word. Although 2020m should use the seed variable generated at runtime, it
hashed the value with the initial value “0”; hence, 2020m sent the hashed value
using the raw user password. The MD5 Reverse Lookup9 might allow intercep-
tors to reverse-engineer the hashed value, obtain the user password, and log in
2020m illegally. Thus, we could infer a vulnerability to intrusion.

Additionally, our validation method revealed that UCDChina sent an empty
text on its search form, despite developers having incorporated a goSearch func-
tion to prevent it. A cause of this erroneous behavior was that UCDChina could
display the search form before loading the code fragment containing the goSearch
function. Since the search form is the source where users enter the search query,
developers in this case had intended to improve the search form. Although they
had expected only valid search queries would be sent from the search form, the
error indicates that UCDChina did not validate the search query at all, and
therefore, it possibly sent every search query. If so, there would be an additional
possibility that a server would receive malicious search queries (e.g., an SQL code
fragment) that might lead to an SQL injection attack.

Our validation method could find an undefined addthis close function call in
ESA by using the synchronous delay operator upon loading an external JavaScript
addthis widget.js file. The undefined function calls can be fatal errors, which
might cause ESA to crash.

Although Crawljax [14] ran until it completed its exploration of the state
space, it did not reveal the actual errors found by our validation method. These
results suggest that our validation method reveals actual errors due to delay-
dependent potential faults.

9http://search.cpan.org/~blwood/Digest-MD5-Reverse-1.3/
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Table 6.9: Actual errors due to delay-dependent potential faults

# Subject Brief explanation
Inferred

vulnerability

1 2020m
Login failed with

Intrusion
correct username and password

2 UCDChina Content search with an empty query SQL injection

3 ESA Undefined function call Application crash

Table 6.10: Results of code and runtime behavior reviews in subject Ajax Web
applications

Subject # Invariants Reviewed behavior Confirmed result

2020m

4 UEHRegist Proper rendering block False positive

8 SeedRetrieve Error#1 in Table 6.9 Potential faults

9 LFDisable Proper page transition False positive

UCDChina

4 UEHRegist Error#2 in Table 6.9 Potential fault

7 FDValid
Form data submitted

Executable fault
without validated

ESA
4 UEHRegist Error#3 in Table 6.9 Potential fault

7 FDValid
Data-intensive

False positive
impossible behavior

Reasonable Analysis Time

For each test subject, JSPreventer, consisting of our extraction, verification, and
validation methods, revealed the actual errors within one minute. Most of the
Te, Tx, and Tt values were required to initialize parsers and to launch the test
browser. Although Tv increased linearly with the size of the extracted finite state
machine, the extracted finite state machines were small enough to be verified
with the NuSMV model checker. Tm was much shorter than the other amounts.
These results indicate that JSPreventer is practical.

False Positives in *-dependent Potential Faults

In our case studies, three potential faults could not be executed using JSPre-
venter and the delay-based mutation operators. As for the potential faults at
Invariants #2 and #5 in 2020m, we observed that Mozilla Firefox prevented
2020m from running on the identified faulty interaction sequences by making a
proper rendering block and page transition, respectively. Since the extracted
finite state machine did not contain the Web browser behavior, we determined
that these potential faults were false positives due to spurious counterexamples.
Additionally, JSPreventer could not make the potential fault at Invariant #3 in
ESA executable. In the source code of ESA, we found that a conditional branch
was implemented to prevent ESA from executing the potential fault. Analyzing
data-intensive impossible behavior is currently beyond the scope of our research;
hence, this result was a false positive due to our methods. However, this problem
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can be mitigated by using execution results to refine the extracted finite state
machine, i.e., by conducting further dynamic analyses together with JSPreventer.
Finally, we confirmed results of our proposed method in the subject applications,
as listed in Table 6.10.

Applying to Generic Ajax Web Applications

We designed JSPreventer for developers who use Ajax design patterns to build
applications. In actual Ajax Web application development, developers have their
own design patterns. If there are not given IADP info for the own design pat-
terns, JSPreventer cannot determine code locations where our mutation operators
should be applied. To test Ajax Web applications made with their own design
patterns, developers need to specify the code locations of synchronous or asyn-
chronous communications which they suspect as the cause of errors when specific
network delays are present. JSPreventer then mutates the code fragments at the
specified code locations and tries to reveal the errors.

Additional Ajax design patterns

We assume that interaction invariants in Ajax Web applications derive from Ajax
design patterns. In fact, developers have their original Ajax design pattern and
flexible requirements. When adding new design patterns, developers need to de-
fine verification properties in the design patterns and relate appropriate property
patterns to the properties. Otherwise, developers can use JSPreventer with raw
CTL verification formulas.

Debugging Potential Faults

We assume that the actual errors revealed by JSPreventer can help developers
debug potential faults. However, this debugging task depends on the skills and
experience of the developers. In the future, we plan to establish a method to
support debugging. For example, we are interested in combining JSPreventer
with automated program repair techniques [104, 27].

6.3 Threats to Validity

6.3.1 Internal validity threats

We considered two external factors that might affect results in our case study
experiments. The results from 2020m, UCDChina, and ESA demonstrate the
usefulness of JSPreventer because these real-world applications were obtained
via a public search engine provided by NerdyData. However, their actual server-
side scripts were not available; therefore, we implemented mock server-side scripts
in order to run these real-world applications on our machine. Because the mock
server-side scripts may be a threat to internal validity, we intend to conduct
additional case studies using real-world open-source Ajax Web applications.

Additionally, we provided the necessary information to run the test subjects
(e.g., IADP Info, test data, and oracles). Although the ability of developers to
input correct information into JSPreventer may affect the internal validity, the
results of our case studies show that JSPreventer can reveal actual errors due to
potential faults. It should be noted that the test scenarios involved typical tests,
such as verifying user login success with the correct username and password. In
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1 <input type=”submit” id=”submit” on c l i c k=” handleCl i ck ( ) ; ”>c l i c k </input>
2 <script type=” text / j a v a s c r i p t ”><!−−//
3 var mystate = 0 ;
4 function handleCl i ck ( ) {
5 i f ( mystate == 0) {
6 i n i t ( ) ;
7 mystate = 1 ;
8 } else i f ( mystate == 1) {
9 proc ( ) ;

10 }
11 }
12 //−−></script>

Figure 6.2: Example of changing behavior depending on state variable

the future, we intend to use JSPreventer in actual Ajax Web application devel-
opment projects to evaluate whether developers can input correct information
into JSPreventer. We are also interested in combining a search-based testing
technique [3] with JSPreventer in order to generate test data automatically.

6.3.2 External validity threats

Regarding the generality of our approach, JSPreventer can only reveal actual
errors due to delay-dependent potential faults. However, potential faults may
depend on other reasons, such as unexpected user operations and Web browser
behaviors. Therefore, we are going to collect *-dependent potential faults by
conducting additional case studies with JSPreventer and define effective mutation
operators for them.

Although 2020m, UCDChina, and ESA are practical Ajax Web applications,
it would be interesting to determine the scalability of JSPreventer by obtaining
experimental results using many real-world Ajax Web applications.

6.4 Limitations

We now describe the limitations of JSPreventer.

6.4.1 State Changes Using Variables

Developers can implement state variables that represent states of Ajax Web ap-
plications. Figure 6.2 shows an example source code to illustrate the state vari-
ables. In this case, the mystate variable corresponds to the state variable (line 3).
When handling the onclick event (lines 1 and 4-11), this applications initially
calls back the init function (line 6), but it then changes their state (line 7) to
call back the proc function from the next time (line 9). Thus, developers expect
that such an application exhibits stateful behavior according to the values of the
state variables.

From Ajax Web applications using the state variables, our extraction method
in JSPreventer extracts a finite state machine representing interaction-based
stateful behavior, which is a different view from what developers expect. Since
our extraction method does not evaluate contexts of variables at conditional state-
ments, it extracts only one state change from the initial state to the state of the
handleClick function in response to the onclick event. Analyzing state changes
depends on the state variables, we can consider combining our extraction method
with constructing the state variable definition graph [88].
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24 i f ( i sVa l i d Input ( ) ) {
25 reqRunTrans ( ) ;
26 } else {
27 a l e r t ( ” Inva l i d user inputs ” ) ;
28 /∗ enableAddCart ( ) ; // proper enab l ing ∗/
29 }

Figure 6.3: Example of changing behavior depending on state variable

24 var s c r i p t f r om u s e r s = document . getElementById ( ”my text area ” ) . va lue ;
25 eva l ( s c r i p t f r om u s e r s ) ;

Figure 6.4: Example of changing behavior depending on state variable

6.4.2 Data-Intensive Impossible Behaviors

Our extraction method analyzes only enable/disable statements to determine
whether an Ajax Web application can handle interactions. In fact, developers can
also implement such interaction controls using data flows. Figure 6.3 gives the
code snippet from our motivating example in Figure 2.6 to illustrate the data-
intensive impossible behaviors. In this code snippet, user inputs for selecting
options can never be invalid (line 24), which means that the application can
never proceed to the state corresponding to invalid user inputs (lines 26-29). Such
data-intensive impossible behaviors can be addressed using DOM-based dynamic
approaches such as Crawljax. Hence, we will extend JSPreventer to leverage the
contributions of these state-of-the-art studies to construct a hybrid approach.

However, we want to claim that such application behavior may be executable
faults even if developers consider it as impossible at first glance, for example, in
the case in which other developers modify the source code of open source Ajax
Web applications or in which users install other application plugins. Therefore, we
argue that our pessimistic verification method is valuable for verifying application
behavior containing potential faults.

6.4.3 Behaviors Added at Runtime

Additionally, Ajax Web applications can add their behaviors at runtime by using
eval, innerHTML, document.write, etc [31]. The additional behaviors can be
generated on the server side or can be entered by users via input forms, resulting
in false negatives with our verification method in JSPreventer. This is because our
extraction method analyzes the interactions implemented in the source code and
the additional behaviors at runtime are implemented out of the source code. For
example, Figure 6.4 demonstrates behaviors added at runtime. In this case, an
application obtains a string from the text area identified by my text area (line 1)
and evaluates the string as its additional behavior by using the eval function (line
2). However, developers should not implement or take great care in implementing
them. This is because they might cause security vulnerabilities such as enabling
the stealing of cookies and misusing user authorizations with servers [49]. To
address the false negatives, we intend to combine JSPreventer with dynamic
analysis techniques that allow it to analyze how Ajax Web applications add their
behavior at runtime.
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6.4.4 Complicated Conditions for Making Potential Faults Execut-
able

Although our validation method in JSPreventer revealed actual errors in the
subject applications, a remaining issue is that it is unknown whether Ajax Web
applications actually execute *-dependent potential faults. It should be noted
that these *-dependent potential faults might be impossible for the subject ap-
plications to actually execute in every environment. Such actually-not-executable
faults can be defined as false positives in JSPreventer. However, current testing
techniques cannot be used for testing the applications in every environment;
hence, JSPreventer has a limitation in precisely determining whether the *-
dependent potential faults are potential faults or false positives. To address
this issue, we are interested in defining additional effective mutation operators
to make *-dependent potential faults executable. With the aid of these muta-
tion operators, we want to specify complicated conditions, in addition to subtle
network delays, to reveal actual errors caused by the potential faults.
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Chapter 7

Related Work

In this chapter, we survey related work according to the following categories.

7.1 State-based Analysis and Testing of Web Applications

In traditional Web applications, Ricca et al. introduced ReWeb for model-
based analysis and testing [82, 83]. They claimed that HTML Web pages are
central entities of the applications and extracted page transition models, i.e.,
navigation models, by analyzing hyperlinks, frames, and forms among the pages.
Such extraction of models from applications correspond to reverse engineering
[16], which is aimed to provide alternative views from software artifacts for re-
documentation, design recovery, etc. [10]. Tramontana claimed that developers
rarely describe sufficient documentations including these models to understand
complexities in Web applications due to the very short time-to-market situation
[99]; Jazayeri also mentioned early releases and frequent specification updates of
Web applications [41]. In this situation, reverse engineering of Web applications
can be used for supporting in developers understanding the complexities in Web
applications.

In terms of supporting program understanding, several researchers have con-
ducted reverse engineering of Web applications. Vanderdonckt et al. developed
a tool called VAQUISTA for reverse engineering user interfaces from traditional
Web applications [100]. This tool statically analyzes HTML pages and translates
them into a presentation model representing elements of these pages. Katsimpa
et al. also used a static approach for reverse engineering of ASP.NET Web ap-
plications [46]. Their proposed tool parses ASPX code, extracts Web page ele-
ments, and creates ASP.NET tag trees for content management of the Web page.
Regarding dynamic approaches, Antoniol et al. focused on dynamic Web page
generation in Web applications and presented their tool called WANDA, which
reverse engineers models, including class diagrams, sequence diagrams, etc., from
the server-side PHP programs [5]. Licca et al. presented the Web Application
Reverse Engineering tool (WARE-tool) [19, 20], where they used both static
and dynamic analyses; as the first step, it analyzes static information such as
static Web pages, then it retrieves dynamic information such as execution results
of PHP print statements. In the early 2000’s, these researchers argued that
the complexities of Web applications lied at the server-side dynamic Web page
generation. However, the advent of Ajax technologies in 2005 [25] moved the
complexities to the client-side event-driven, asynchronous, and dynamic features
of the applications.

To address the complexities derived from Ajax technologies, Marchetto et
al. introduced the concept of state-based analysis and testing to Ajax Web ap-
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plications [53, 52] in 2008. Their tool called ReAjax [54] extracts finite state
machines from the execution results of Ajax Web applications. The finite state
machines consist of the document object model (DOM) [94] instances and the
effects of callback executions as states and transitions; Duda et al. also proposed
the transition graph based on a similar concept [22]. However, ReAjax requires
developers to manually execute Ajax Web applications to sufficiently trace the
execution results.

Towards automated execution, Mesbah et al. implemented Crawljax [56,
60], which crawls Ajax Web applications by automatically emulating user ac-
tions. They proposed many tools involving Crawljax; Automatically Testing UI
States of Ajax (ATUSA) can be used for detecting Ajax-specific faults, such
as malformed HTML codes, 404 not found errors, dead clickable elements [59],
and security-related DOM change and HTTP request violations [8]. Addition-
ally, they ran Crawljax on different browser environments and compared these
crawling results for testing the cross browser compatibility [58]; Choudhary et
al. also used Crawljax to improve the accuracy of identifying cross browser is-
sues [12]. Mesbah et al. also presented a tool called CILLA based on Crawljax,
which determines unnecessary CSS rules from the results of sufficiently crawl-
ing the applications, resulting in reducing the size of CSS files to be transferred
[57]. Since Crawljax is powerful for finding executable faults by automatically
crawling Ajax Web applications, this has been the most successful study in the
domain of state-based analysis and testing of the applications. In addition, Arzti
et al. presented Artemis [7] as a way to improve code coverage by using the
feedback-directed technique [77]. Artemis analyzes historical test execution data
and generates test cases to explore the state space of Ajax Web applications.
The authors noted that Artemis may help Crawljax determine what user actions
should be emulated. However, Crawljax and Artemis cannot be combined in a
way that would determine potential faults in Ajax Web applications.

In contrast, Amalfitano et al. proposed several state change criteria in Ajax
Web applications and an interactive process for extracting finite state machines
[4]. They constructed a tool called CreRIA that suggests state changes based
on the criteria and developers can accept or reject the suggestions while execut-
ing Ajax Web applications. Fard et al. also leveraged human efforts towards
automated test generation for Ajax Web applications [63]. Their tool called
Testilizer first reads test cases given by developers and a state-flow graph
based on the test cases. It then refines the state-flow graph by using Crawl-
jax and finally generates test cases based on the refined state-flow graph. Such
strategies involving developers in automated processes by tools are feasible for
effectively and efficiently analyzing and testing Ajax Web applications. In this
study, we also considered manual efforts of developers to input the IADP info,
test data, and oracles.

However, the above dynamic approaches cannot verify the correctness of ap-
plication behaviors because they leverage execution results. Our motivation for
constructing JSPreventer is that Ajax Web applications may have not-easily-
executable faults to be exposed.

7.2 JavaScript Control Flow Analysis

Regarding static approaches, Guha et al. proposed a static method to prevent
Ajax Web applications from handling invalid server requests [33]. Their frame-
work analyzes control flows in the JavaScript code of applications and constructs
a request graph through control flow analysis, which represents how Ajax Web ap-
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plications handle asynchronous server requests with an invariant order. Although
their analysis results can be used for detecting invalid server requests at runtime,
it was presumed with their approach that developers can correctly understand
and implement application behavior. However, if developers cannot correctly im-
plement Ajax Web applications, the request graph cannot reject invalid server
requests relevant to potential faults. Thus, developers debugging the potential
faults using JSPreventer can construct a more proper request graph from the
debugged applications. Additionally, they pointed out that analyzing disabling
event handlers is necessary to precisely monitor Ajax Web application behav-
ior, which was their limitation. Our analysis scope covers application behavior
containing such enabling and disabling interactions.

Zheng et al. also conducted a rules-based static analysis to detect data races
due to asynchronous calls in Ajax Web applications [105]. Their proposed system
first extracts JavaScript codes from Web pages that are dynamically generated by
server-side scripts. It then parses the retrieved codes and identifies asynchronous
calls, which are event handlers for user actions and asynchronous server responses;
we deal with these asynchronous calls as the sort of user and server interactions
in this study. To detect the data inconsistency and atomicity violations in global
variables shared by these asynchronous calls, this system uses T.J. Watson Li-
braries for Analysis (WALA)1, which performs pointer analysis for JavaScript
programs. Here, JavaScript codes are implemented to dynamically manipulate
Web page elements, which are also shared by these asynchronous calls; however,
these elements are not always set to global variables of JavaScript codes. Since
JSPreventer leverages Ajax design patterns as behavior oracles, it can identify
faulty asynchronous calls without global variable-based data races. Additionally,
Zheng et al. were not interested in testing unexpected behaviors in the appli-
cations if a detected data race occurred. Although they suggested two methods
to fix data races, we argue that the actual errors found by JSPreventer can help
developers debug their applications and confirm the correctness of the codes.

Jensen et al. modeled the HTML DOM and browser APIs as a set of ab-
stract JavaScript objects [42]. This model can be used for precisely analyzing
the control flow and dataflow of ‘JavaScript’ Web applications. Their objective
was to detect or show absence of potential programming errors, such as unreach-
able code, in JavaScript programs used in the applications. However, since the
basic building blocks of the client-side of Web applications are HTML, CSS, and
JavaScript [101, 51], we argue that their abstraction of HTML and CSS might be
too approximation for analyzing ‘Ajax’ Web application behavior. Therefore, we
designed JSPreventer to analyze all the client-side codes. Additionally, Jensen
et al. discussed the challenge of modeling a browser environment. For this chal-
lenge, we fortunately found envjs2, which allows the JavaScript parser [67] used
in JSPreventer to simulate a browser environment.

Guarnieri et al. introduced a pure static taint analysis for JavaScript code in
order to identify security vulnerabilities such as cross-site scripting and SQL in-
jection [32]. Wei et al. pointed out the dynamic feature of JavaScript; JavaScript
code can dynamically get additional code from the server at runtime. They pro-
posed a blended taint analysis of the JavaScript code that can be collected by
executing test cases [102]. Although these analyses can output precise control
flows of only the JavaScript code, JSPreventer analyzes stateful behaviors in the
HTML, CSS, and JavaScript code of Ajax Web applications.

1http://wala.sourceforge.net/
2http://www.envjs.com/
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7.3 Design Pattern Verification

Blewitt et al. conducted detection of the Gang of Four (GoF) design patterns
[35] in Java using semantic constraints [9]. Their concern was that software
evolution over time would violate properties of the design patterns in their original
forms on the implementations. Additionally, Ghabi et al. addressed an issue
of maintaining requirements-to-code traces [26] because software evolution also
invalidates a requirements traceability matrix. In this study, we assume that
information about IADPs is correct, and it would be interesting to determine
how JSPreventer works with the incorrect information.

7.4 Client-Server Codes Traceability

Although we focused on HTML, JavaScript, and CSS codes of Ajax Web applica-
tions, these client-side codes can be generated using the server-side program codes
such as PHP. Therefore, Nguyen et al. proposed mapping algorithms for tracing
from the client-side to the server-side codes [70]. They proposed a tool called
PhpSync, which finds the PHP print and echo statements from the server-side
programs as the source of dynamically generated client-side Web pages and out-
puts approximate client-side HTML Web pages in the D-model. The PhpSync
tool then uses the Tidy validator [90] to fix validation errors in the approximate
HTML Web pages. This tool keeps relationships among the PHP code fragments
and elements in the D-model so that PhpSync can propagate the fixes to cor-
responding parts of server-side PHP programs; Samimi et al. also presented an
approach to automatically repair malformed HTML Web pages generated from
PHP programs by using string constraint solving [85]. Additionally, Nguyen et al.
extended PhpSync to a tool called Dangling Reference Checker (DRC), which de-
tects dangling references across HTML, JavaScript, PHP, and SQL statements by
using the D-model [69]. We plan to combine their traceability analysis technique
with JSPreventer so that it will be able to locate actual faults on the server-side
codes.

7.5 Mutation Analysis and Testing

In the late 70s, mutation testing was first proposed by DeMillo et al. [18] and
Hamulet [34]. It seeds artificial faults into the program under test and then mea-
sures whether the seeded artificial faults can be detected in the test cases. After-
wards, many researchers developed effective mutation testing techniques specific
to programming languages and paradigms, program specifications, and testing
activities [75, 43]. Accordingly, Web-application-specific mutation testing tech-
niques have been proposed. To address distinctive features of Web applications,
Mansour et al. developed mutation operators based on a fault model of .NET
Web applications [50]. Praphamontripong et al. also presented mutation oper-
ators for JavaServer Pages (JSP) Web applications by categorizing JSP-related
faults [81]. Additionally, Shahriar et al. designed PHP- and JavaScript-specific
mutation operators to inject cross site scripting (XSS) vulnerabilities to Web ap-
plications [87]. These studies were focused on the server-side complexities, i.e.,
Web applications that dynamically generate Web pages according to user requests
at runtime. However, Ajax event-driven and asynchronous features have raised
diverse complexities to be addressed in mutation testing.

Mutation testing for Ajax Web applications has been recently proposed as fol-
lows. Bottom-up approach: Since injected faults should be all-too-common,

68



mutation operators can be defined based on real faults previously made by de-
velopers. Indeed Ocariza et al. pointed out that public bug repositories for Web
applications had few bug reports relevant to the client-side Ajax technologies
[73], but Mirshokraie et al. collected real faults from the best practices by expe-
rienced programmers, such as JavaScript design patterns [76] and ant-patterns
[38], for formalizing mutation operators [65]. Top-down approach: In contrast,
Nishiura et al. proposed mutation operators specific to Ajax Web applications
by conducting feature analysis of the applications [72]. Their proposed mutation
operators inject comprehensive types of faults in Ajax Web applications; hence,
developers may be able to improve test sets for detecting faults they did not make
but will make. To the best of our knowledge, these approaches are state-of-the-art
studies on mutation testing for Ajax Web applications.

In contrast, JSPreventer leverages a deformed mutation analysis technique,
wherein seeded artificial delays do not act as faults to be detected but expose
existing potential faults in Ajax Web applications. Although JSPreventer cannot
be used to assess the adequacy of test cases, it can reveal actual errors due to
potential faults. In addition, we assume an unexpected network latency may make
potential faults executable, but JSPreventer could not make all the identified
potential faults executable. Since the mutation operators proposed in the state-
of-the-art studies were designed for injecting actual errors in JavaScript programs
of Ajax Web applications, they may be used for reveal actual errors doe to the
potential faults. Therefore, we are interested in using these mutation operators
in addition to our delay-based mutation operators.

7.6 Debugging Concurrent Programs

As a basic approach to debugging a program under test, developers cyclically
stop such a program during execution and check whether the program runs as
expected. However, such a cyclical debugging approach may not be applicable for
debugging concurrent programs, such as Ajax Web applications, because of not-
easily-reproducible faults due to nondeterministic behavior of the programs [55].
Therefore, Carver et al. proposed a deterministic execution debugging technique,
which uses semaphores and monitors to make a concurrent program under test
sequentially runnable [11], enabling developers to debug concurrent programs in
the same way as for sequential programs.

Hong et al. have a concern similar to our validation method, and addressed
to find concurrency errors due to the improper timing of Ajax Web applications
handling the interactions [37]. Their tool called WAVE is an extended implemen-
tation of the WebKit3 browser framework for managing event invocations on the
JavaScript engine; the WAVE preliminarily records an order of event invocations
and handles the events in that order. However, exposed errors on a customized
Web browser might not be equal to actual errors in a user environment. This is
because the HTML rendering engine can also affect event invocations, such as the
rendering block, as we mentioned in Section 5.2.2. Since our validation method
modifies the source programs and enables the applications to sequentially run,
resulting in revealing errors due to potential faults of Ajax Web applications on
standard Web browsers that users actually use. Thus, our validation method can
more precisely suggest erroneous behavior of the applications to developers.

3https://www.webkit.org/
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7.7 Automated Program Repair

A remaining issue in this study is to support developers to debug Ajax Web ap-
plications. For addressing this issue in future, we consider to leverage automated
program repair techniques.

Weimer et al. presented the generate-and-validate program repair technique,
which automatically generates fault-fixed candidate programs and validates them
through testing [103]. They mentioned that, since 2009, many researchers have
been concerned with this technique to reduce software maintenance costs. To
generate the candidates, their tool called GenProg uses mutation operators that
add, remove, or replace statements in a program under test [104, 27]. They used
mutation operators for repairing the program instead of injecting artificial faults;
hence, their direction is similar to that in our validation method. Additionally,
Kim et al. found fix-patterns from human-written patches in Java programs for
automatic patch generation [47]. It would be interacting how the fix-patterns
work for repairing Ajax Web applications.
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Chapter 8

Conclusion

8.1 Summary

We addressed the challenges in preventive maintenance of Ajax Web applications.
The first challenge was the blind spots of application behaviors that might not
be executable on given execution scenarios and environments. Developers have
troubles identifying potential faults from the blind spots; as a result, the potential
faults will cause actual errors in a user environment. Therefore, our aim was to
reveal these errors in a testing environment of developers to prevent users from
encountering these errors.

Although the state-based approach may be effective in detecting executable
faults in Ajax Web applications, we argued that the state-of-the-art studies re-
lied on DOM-based dynamic approaches, so they could not detect potential faults
from the execution results of the applications. Therefore, we investigated a static
extraction method of a finite state machine representing interaction-based state-
ful behavior in Ajax Web applications (Chapter 3). From the results of our
preliminary case study, we confirmed that the extracted finite state machines
helped the participants find the errors even if some of them were not executable
on the experimental environments. However, the participants claimed the non-
negligible cost of manually determining the correctness of the extracted finite
state machines.

Towards automated verification, the second challenge was that there were
not generic behavior oracles relevant to interactions with Ajax Web applications.
For this challenge, we leveraged Ajax design patterns to define the interaction
invariants, which enabled our verification method to semi-automatically verify
the properties described in the design patterns (Chapter 4).

Although our verification method reported the presence of potential faults
in the applications, the third challenge was unknown conditions to reveal actual
errors due to the potential faults; reported potential faults might not always
lead to actual errors. To specify these conditions, we developed delay-based
mutation operators, which can be used to find executable evidence of potential
faults (Chapter 5). From the results of our case study on real-world applications,
our proposed methods revealed actual errors and some of them indicated severe
vulnerabilities in the applications. We expect that developers can use the revealed
errors to debug potential faults in a similar way to executable faults. Therefore,
we conclude that our proposed methods can support developers in conducting
preventive maintenance for building highly reliable Ajax Web applications.
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8.2 Future Work

Our future research will proceed in three separate directions described in Sections
8.2.1, 8.2.2, and 8.2.3. Figure 8.1 illustrates these directions based on the overview
of our proposed methods in Figure 1.1. We also plan to follow up this thesis with
additional studies described in Sections 8.2.4, 8.2.5, 8.2.6, and 8.2.7.

8.2.1 Debugging Support

Although we argued that developers can debug the potential faults in Ajax Web
applications by using the revealed errors, debugging support is a remaining issue
of this study. For addressing this issue, we are interested in leveraging auto-
mated program repair techniques [104, 27, 103]. These state-of-the-art studies
on automated program repair relies on mutation operators that are originally
designed to inject artificial faults. Such mutation operators should be defined
specific to programming languages and paradigms, program specifications, and
testing activities [75, 43]. Fortunately, several researches have been recently con-
ducted to define effective mutation operators specific to Ajax Web applications
[65, 72]. Hence, we can consider to leverage such Ajax-specific mutation opera-
tors to automatically repair Ajax Web applications so as to remove the potential
faults.

8.2.2 Automated Verification

The IADP info should be given by developers to our verification method for
instantiating the interaction invariants. We need to mitigate this additional task
for developers. Blewitt el al. mentioned that Design by Contract (DbC) [62] can
be used for automated verification purposes [9]. In DbC, developers implement
program specifications, such as pre/postconditions and invariants, into the source
code. Furthermore, Pei et al. have recently presented that these contracts can
be used for automated program repair [79]. Therefore, we want to establish how
developers can effectively implement interaction-related specifications into the
source code of Ajax Web applications.
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8.2.3 Automated Testing

To reveal actual errors, our validation method additionally requires test data
and oracles from developers. Towards full-automation, we plan to combine our
proposed method with the state-of-the-art studies on the state-based approaches;
especially, the Crawljax tool is quite powerful to detect many types of faults in
Ajax Web applications [56, 59, 8, 58, 7, 57, 60, 12]. The Crawljax team has
recently presented the test data generation technique [63]. It would be interesting
that this technique may work instead of the manual inputs. Actually, we are also
interested in other techniques such as the search-based testing [3].

8.2.4 Extracted Finite State Machine

We designed our extraction method to extract a finite state machine that was suf-
ficiently small for developers to manually review, whereas our verification method
might mitigate the cost of this manual review with a model checking technique.
Since this model checking technique can be applied to a large finite state ma-
chine, we plan to redesign our extraction method to extract a larger finite state
machine that represents more precise stateful behavior in Ajax Web applications,
might resulting in less false positives and negatives in JSPreventer, as described
in Sections 6.4.2 and 6.4.3. To more precisely analyze the application behavior,
we intend to extend our extraction method to analyze the execution context of
events and functions implemented in Ajax Web applications. For this extension,
we are interested in combining our extraction method with dynamic analysis
techniques.

8.2.5 Expansion and Extension of Interaction Invariants

We heuristically defined interaction invariants from the literature of Ajax design
patterns [49]; however, developers might have difficulty in defining additional in-
teraction invariants from their own requirements. Therefore, we plan to build a
domain-specific language (DSL) for this definition task in our verification method.
We expect that this DSL supports developers in determining verification proper-
ties and relating appropriate property patterns to the properties.

Additionally, our validation method was developed to provide evidence that
potential faults cause actual errors in Ajax Web applications if there are subtle
network delays; however, it does not help for verifying that any network delays
do not make potential faults executable. For this verification, we will extend our
verification method to verify the correctness of timed automata for Uppaal1.

8.2.6 Program Mutation for Diverse Potential Faults

In our validation method, we focused on unexpected network delays that might
cause severe problems in Web applications. However, these severe problems may
be caused by a variety of factors. For example, in our case study described in
Section 6.2, we observed that the Web browser prevented the subject applications
from running on the faulty interaction sequences identified by our verification
method, but anomalous Web browser behaviors may cause the severe problems
such as cross browser compatibility. Thus, we need to establish a way of designing
mutation operators for making diverse potential faults executable.

1http://www.uppaal.org/
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8.2.7 Additional Case Studies

We will expand the range of case studies on real-world, large-scale, and practical
Ajax Web applications. In addition, we also intend to use JSPreventer in actual
Ajax Web application development projects.
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of Individual Features in Client-Side Web Applications. IEEE Transactions
on Software Engineering (TSE), 39(12):1680–1697, 2013.

[52] Alessandro Marchetto, Filippo Ricca, and Paolo Tonella. A Case Study-
based Comparison of Web Testing Techniques Applied to AJAX Web Ap-
plications. International Journal on Software Tools for Technology Transfer
(STTT), 10(6):477–492, oct 2008.

[53] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based Test-
ing of Ajax Web Applications. In Proceedings of the First International
Conference on Software Testing, Verification and Validation, ICST ’08,
pages 121–130, April 2008.

[54] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. ReAjax: a reverse
engineering tool for Ajax Web applications. IET Software, 6(1):33–49, 2012.

78



[55] Charles E. McDowell and David P. Helmbold. Debugging Concurrent Pro-
grams. ACM Computer Survey, 21(4):593–622, 1989.

[56] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling Ajax by Infer-
ring User Interface State Changes. In Proceedings of the 8th International
Conference on Web Engineering, ICWE ’08, pages 122–134. IEEE Com-
puter Society, July 2008.

[57] Ali Mesbah and Shabnam Mirshokraie. Automated Analysis of CSS Rules
to Support Style Maintenance. In Proceedings of the 32nd International
Conference on Software Engineering, ICSE ’12, pages 408–418, May 2012.

[58] Ali Mesbah and Mukul R. Prasad. Automated Cross-Browser Compatibility
Testing. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 561–570, May 2011.

[59] Ali Mesbah and Arie van Deursen. Invariant-based Automatic Testing of
AJAX User Interfaces. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 210–220, May 2009.

[60] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-
based Web Applications through Dynamic Analysis of User Interface State
Changes. ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[61] Ali Mesbah, Arie van Deursen, and Danny Roest. Invariant-Based Auto-
matic Testing of ModernWeb Applications. IEEE Transactions on Software
Engineering (TSE), 38(1):35–53, 2012.

[62] Bertrand Meyer. Applying ’design by contract’. IEEE Computer,
25(10):40–51, October 1992.

[63] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging Ex-
isting Tests in Automated Test Generation for Web Applications. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 67–78, September 2014.

[64] Miniwatts Marketing Group. World Internet Users Statistics and 2014
World Population Stats. http://www.internetworldstats.com/stats.

htm.

[65] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript
Mutation Testing. In Proceedings of the 6th IEEE International Conference
on Software Testing, Verification and Validation, ICST ’13, pages 74–83,
March 2013.

[66] Mozilla Developer Network and individual contributors. JavaScript. https:
//developer.mozilla.org/docs/Web/JavaScript.

[67] Mozilla Developer Network and individual contributors. Rhino. https:

//developer.mozilla.org/docs/Mozilla/Projects/Rhino/.

[68] Mozilla Developer Network and individual contributors. XMLHttpRequest.
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest.

[69] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, Anh Tuan
Nguyen, and Tien N. Nguyen. Dangling References in Multi-configuration
and Dynamic PHP-Based Web Applications. In Proceedings of the 28th

79



IEEE/ACM International Conference on Automated Software Engineering,
ASE ’13, pages 399–409, November 2013.

[70] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. Auto-Locating and Fix-Propagating for HTML Validation Errors
to PHP Server-side Code. In Proceedings of the 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’11, pages
13–22, November 2011.

[71] Jakob Nielsen and Hoa Loranger. Prioritizing Web Usability. New Riders
Press, Berkeley, CA, 2006.

[72] Kazuki Nishiura, Yuta Maezawa, Hironori Washizaki, and Shinichi Honi-
den. Mutation Analysis for JavaScript Web Applications Testing. In Pro-
ceedings of the 25th International Conference on Software Engineering and
Knowledge Engineering, SEKE ’13, pages 159–165, June 2013.

[73] Frolin S. Ocariza, Karthik Pattabiraman, and Ali Mesbah. AutoFLox: An
Automatic Fault Localizer for Client-Side JavaScript. In Proceeding of the
5th IEEE International Conference on Software Testing, Verification and
Validation, ICST ’12, pages 31–40, April 2012.

[74] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Benjamin Zorn.
JavaScript Errors in the Wild: An Empirical Study. In Proceedings of 2011
IEEE 22nd International Symposium on Software Reliability Engineering,
ISSRE ’11, pages 100–109, November 2011.

[75] A. Jefferson Offutt and Ronald H. Untch. Mutation 2000: Uniting the
Orthogonal. InMutation Testing for the New Century, pages 34–44. Kluwer
Academic Publishers, 2001.

[76] Addy Osmani. Learning JavaScript Design Patterns. O’Reilly Media, Inc.,
2012.

[77] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-Directed Random Test Generation. In Proceedings of the 29th
International Conference on Software Engineering, ICSE ’07, pages 75–84,
May 2007.

[78] Linda Dailey Paulson. Building Rich Web Applications with Ajax. Com-
puter, 38(10):14–17, 2005.

[79] Yu Pei, C.A. Furia, M. Nordio, Yi Wei, B. Meyer, and A. Zeller. Au-
tomated fixing of programs with contracts. Software Engineering, IEEE
Transactions on, 40(5):427–449, May 2014.

[80] Perl.org. The Perl Programming Language. https://www.perl.org/.

[81] Upsorn Praphamontripong and Jeff Offutt. Applying Mutation Testing to
Web Applications. In Proceeding of the 3rd International Conference on
Software Testing, Verification and Validation, ICST ’10, pages 132–141,
April 2010.

[82] Filippo Ricca and Paolo Tonella. Analysis and Testing of Web Applica-
tions. In Proceedings of the 23rd International Conference on Software
Engineering, ICSE ’01, pages 25–34, May 2001.

80



[83] Filippo Ricca and Paolo Tonella. Understanding and Restructuring Web
Sites with ReWeb. IEEE MultiMedia, 8(2):40–51, April 2001.

[84] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape
and Research Challenges. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 4(2):14:1–14:42, May 2009.
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Appendix A

Notations in Distinguishing Rules

Table A.1 lists notations used in the distinguishing rules.

Table A.1: Lists of notations used in distinguishing rules

Notation Brief explanation

Trigger A tag of the trigger rule.

interact An attribute of <Trigger> representing the interaction type.

(value: User, Server, or Self)

event An attribute of <Trigger> representing the event type.

repeatable An attribute of <Trigger> representing that an application

repeatably handle the event or not. (value: true or false)

Function A tag of the function rule.

func An attribute of <Function> representing the function name.

event An attribute of <Function> representing the source of

event type that the function handles.

callback An attribute of <Function> representing the source of

callback function of the event handler.

target An attribute of <Function> representing the source of

target element where the function attaches the event handler.

event modifier An attribute of <Function> to modify the displayed text of

the event type (value: user click or after msec)

masking An attribute of <Function> representing that the target element

is the popup box (value: true or false)

Control A tag of the control rule.

attr An attribute of <Control> representing the attribute name.

disabled An attribute of <Control> representing the disable value.

prop An attribute of <Control> representing the property source.

value An attribute of <Control> representing the value source.

cond An attribute of <Control> representing the condition

to make the target element disabled.

arg N A value representing the N th argument of the function.

PropTarget A value representing the object property.

ret A value representing the return value of the function.

user click A value representing the implicit user click event type.

after msec A value representing the event handled after the msec elapsed.
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Appendix B

Benchmark Applications

To determine that our proposed methods properly work, we implement three
benchmark Ajax Web applications. Since one of them is our motivating example
described in Section 2.6, we describe other two applications called FileDLer

and QAsite. Additionally, we show results of our proposed methods on these
benchmark applications.

B.1 FileDLer

B.1.1 Implementation

We give the source code and screenshots of an Ajax Web application called
FileDLer1 in Figure B.1 and Figure B.2. FileDLer is a typical application of
a file downloader Web service. This application (i) initially starts a countdown;
(ii) displays a random password string and an input form when the count reaches
zero; (iii) allows users to enter and submit a string; and then (iv) enables users to
download the file if they give the correct password. In this application, we make
two erroneous behaviors to be exposed, as listed in Table B.1.

(i) Countdown When users access this application, it first evaluates the page
load event of onload (line 5), and then invokes the countDown callback func-
tion (lines 6-13). In this function, if the count is greater than zero, this ap-
plication updates the count progress and calls back the countDown function
after 1000 msec elapsed (lines 7-9), as shown in Figure B.2a. Otherwise, it
proceeds in getPwd (lines 11 and 14-27) and then sends an asynchronous
message (lines 15-25) by using the included prototype.js library (line 2).
The createPwd.php returns a randomly-generated string as a correct pass-
word (line 16). After evaluating the onSuccess event, this application sets
the response data to the pwd variable and displays it (lines 17-21).

(ii) Set input form This application sets an input-form and a submit-button.
As the erroneous behavior #1, although developers expect that this applica-
tion receives user inputs after it displays the correct password, it improperly

Table B.1: Erroneous behaviors in FileDLer

# Brief explanation of erroneous behavior Line(s)

1 Receiving user inputs before displaying correct password 20 and 26

2 Receiving user inputs after given password is validated 49

1Running examples are available from: http://mzw.jp/yuta/research/ex/fd/
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1 <html><head>
2 <script type=” text / j a v a s c r i p t ” s r c=” j s / prototype . j s ”></script>
3 <script type=” text / j a v a s c r i p t ”><!−−//
4 var count = 5 , pwd ;
5 window . onload = countDown ;
6 function countDown ( ) {
7 i f (0 < count ) {
8 updateProgress ( count−−);
9 setTimeout ( countDown , 1000 ) ;

10 } else {
11 getPwd ( ) ;
12 } ;
13 } ;
14 function getPwd ( ) {
15 new Ajax . Request (
16 ”createPwd . php” , {
17 onSuccess : function ( r eque s t ) {
18 pwd = reques t . responseText ;
19 updateProgress (pwd ) ;
20 /∗ setForm ( ) ; // Proper ∗/
21 } ,
22 onFa i lure : function ( Request ) {
23 a l e r t ( ” Fa i l to get password” ) ;
24 }
25 } ) ;
26 setForm ( ) ; /∗ Improper ∗/
27 } ;
28 function setForm ( ) {
29 var f t e x t = document . createElement ( ” input ” ) ;
30 f t e x t . onkeyup = inputFormText ;
31 var f submit = document . createElement ( ” input ” ) ;
32 fsubmit . d i s ab l ed = true ;
33 fsubmit . on c l i c k = doSubmit ;
34 /∗ append f t e x t and fsubmit ∗/
35 } ;
36 function inputFormText ( ) {
37 var l en = $ ( ” f t e x t ” ) . va lue . l ength ;
38 i f (0 < l en ) $ ( ” fsubmit ” ) . d i s ab l ed = fa l se ;
39 else $ ( ” fsubmit ” ) . d i s ab l ed = true ;
40 } ;
41 function doSubmit ( ) {
42 var va l = $ ( ” f t e x t ” ) . va lue ;
43 i f ( va l == pwd) {
44 disableForm ( ) ;
45 enableDownload ( ) ;
46 } else a l e r t ( ” Input password i s i n v a l i d ” ) ;
47 } ;
48 function disableForm ( ) {
49 /∗ $ (” f t e x t ” ) . d i s ab l ed = true ; // Improper ∗/
50 $ ( ” fsubmit ” ) . d i s ab l ed = true ;
51 } ;
52 function enableDownload ( ) {
53 appendTextContent ( ”Cl i ck the f o l l ow i n g button to download” ) ;
54 var d l btn = document . createElement ( ” input ” ) ;
55 d l btn . on c l i c k = doDownload ;
56 /∗ append d l btn ∗/
57 } ;
58 function doDownload ( ) {
59 window . l o c a t i o n . h r e f = ”path/ to / f i l e . ext ” ;
60 $ ( ” d l btn ” ) . d i s ab l ed = true ;
61 appendTextContent ( ”Thank you f o r us ing our s e r v i c e ” ) ;
62 } ;
63 function updateProgress ( s t r ) { /∗ s e t s t r i n g in a p rog r e s s f i e l d ∗/ } ;
64 function appendTextContent ( s t r ) { /∗ s e t s t r i n g in a download f i e l d ∗/ } ;
65 //−−></script></head><body>
66 <div id=” prog r e s s ”></div><div id=”form”></div>
67 <div id=”download”></div>
68 </body></html>

Figure B.1: Source code of our benchmark application: FileDLer
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Figure B.2: Screenshots of FileDLer

deploys the input-form regardless of the asynchronous communication re-
sult (line 26), as shown in Figure B.2b. If the communication fails, users can
enter a string in the input-form without the correct password after clicking
an alert box (lines 22-24) (Error#1 in Table B.1). Additionally, even if this
application succeeds the communication, users might be confused to action
in the input-form during this application is waiting for the response. Thus,
this application might not run as expected by developers.

(iii) Input password and submit In the setForm function (lines 28-35), this
application creates and appends two input elements corresponding the
input-form and submit-button. To handle user actions on these elements,
it then sets the inputFormText and doSubmit callback functions to the
onkeyup and onclick event handler attributes of these elements, respec-
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Table B.2: Given IADP info for FileDLer and verification results

# Interaction invariant $Var1 $Var2 Resultv

1 AsyncComm Ajax.Request UserEvents Correct

2 ACRetry onFailure Ajax.Request Fault

3 SRWait inputFormText onSuccess Fault

4 UEHRegist UserEvents onload Correct

5 UEHSingle doDownload UserEvents Fault

tively (lines 30 and 33). Since the input-form does not initially have any
user inputs; hence, the submit-button should be disabled (line 32), as shown
in Figure B.2c. Users then cannot submit until they input in the input-
form. Next, when users enter in the input-form, this application enables
or disables the submit-button according to given string in the input-form
(lines 37-39), as shown in Figure B.2d. If the given string equals to the
correct password, this application enable users to download the file (lines
43-45). Otherwise, this application displays an alert box (line 46).

(iv) Download When users enter a valid password and submit it, this applica-
tion displays the download-button in the enableDownload function (lines
52-57), as shown in Figure B.2f. It then disables the download-button after
users start to download the file (line 60). Users no longer need to action on
the input-form; however, developers might miss to disable the input form
(line 49), as shown in Figure B.2f. In that case, this application might be
confusing to users (Error#2 in Table B.1).

B.1.2 Results of Proposed Methods

Figure B.3 shows finite state machines extracted from the faulty and correct
versions of FileDLer by using our extraction method. We expect that these
extracted finite state machine help developers to find errors in Ajax Web ap-
plications. For example, developers may find Error#1 in Table B.1 at the edge
between Scope:126 and inputFormText nodes. Additionally, developers may use
the finite state machine extracted from the correct version, as shown in Figure
B.3b, to determine the correctness of the application behavior. These extracted
finite state machines are conformed to those we expect; therefore, our extraction
method properly works in FileDLer.

We then execute our proposed verification method on the faulty version of
FileDLer. When implementing this application, we did not consider any Ajax
design patterns [49]; hence, we determine that all fundamental interaction in-
variants listed in Table 4.3 should be satisfied in FileDLer. As listed in Table
B.2 $Var1 and $Var2, we give IADP info to our verification method based on
our heuristics. From the verification results are listed in Table B.2 Resultv, we
find that FileDLer improperly runs when the asynchronous communication fails
(invariant#2 in Table B.2). The fault verification results at invariant#3 and
invariant#4 in Table B.2 correspond to Error#1 and Error#2 in Table B.1, re-
spectively. Additionally, all the verification results on the correct version are
correct. Thus, our verification method also properly works in FileDLer.

Next, we apply our validation method to the fault verification results. Ta-
ble B.3 lists results of our validation results. As for invariant#5, this fault is
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Figure B.3: Finite state machines extracted from FileDLer
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Table B.3: Validation results in FileDLer

# Interaction invariant Fault class

2 ACRetry *-dependent potential fault

3 SRWait Delay-dependent potential fault

5 UEHSingle Executable fault

executable in our testing environments. If developers know the presence of this
fault, they can easily find it. Our validation method works well for potential faults
against invariant#3. This is because this fault is not executable in our localhost
environment but our asynchronous delay mutation operator make this fault ex-
ecutable, resulting in revealing Error#1 in Table B.1. However, our mutation
operators are not designed for making asynchronous communications failed; con-
sequently, potential fault at invariant#2 is not exposed by our validation method.
Note that we manually cause the communication failure and make sure of an oc-
currence of Error#2. Since all these validation results are those we expect, we
can say that our validation method works properly in this application as well as
our extraction and verification methods.

B.2 QAsite

B.2.1 Implementation

We implemented a simple Ajax Web application called QAsite2. QAsite is a typ-
ical Q&A website where users can ask and answer each other’s questions, such as
in Experts Exchange3 and Quora4. In implementing QAsite, we referred to the
User Action, On-Demand JavaScript, and Direct Login patterns described in
the Ajax design patterns [49].

Figure B.4 briefly depicts the source code, while Figure B.5 shows screenshots
of QAsite, which runs as follows.

(i) Page load: Upon a page load, QAsite registers user event handlers for the
login form and the “Good!” button (lines 6-11). The User Action pattern
notes such implementations so that Ajax Web applications can handle user
events anytime. Additionally, the QAsite masks the answers (line 60) to
prohibit guest users from viewing them. This implementation is similar
to the On-Demand JavaScript pattern, in which QAsite should handle the
click on the “Good!” button after users login.

(ii) Login: We implemented the login form according to the Direct Login pat-
tern. When a user sets the cursor on the input forms (lines 7-8), QAsite
determines that the user intends to log in, and QAsite asynchronously re-
trieves seed data from the server (lines 13-21). When a user clicks on the
login button (line 9), QAsite sends the username and a hash value with
the password and seed data for secure communications to validate the ac-
count on the server side (lines 26-32). After receiving the validation result
(line 30), QAsite creates a logout widget and disables the login form if the
information is valid (lines 35-37).

2Running examples are available from: http://mzw.jp/yuta/research/ex/QAsite/
3http://www.experts-exchange.com
4http://www.quora.com
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1 <html><head>
2 <!−− Load ex t e rna l JavaScr ipt f i l e −−>
3 <script type=” text / j a v a s c r i p t ” s r c=” j s / prototype . j s ”></script>
4 <script type=” text / j a v a s c r i p t ”><!−−//
5 . . . /∗∗ User Action ∗∗/
6 window . onload = function ( ) {
7 $ ( ”username” ) . onfocus = getSeed ;
8 $ ( ”password” ) . onfocus = getSeed ;
9 $ ( ” l o g i n ” ) . on c l i c k = va l ida t eLog in ;

10 $ ( ”good” ) . onmousedown = onGood ;
11 }
12 . . . /∗∗ Direc t Login ∗∗/
13 function getSeed ( ) {
14 i f ( ! l oggedIn && ! hasSeed ) {
15 new Ajax . Request (LOGIN PREFIX, {
16 method : ”GET” ,
17 parameters : ” task=get seed ” ,
18 onSuccess : handleHttpGetSeed
19 } ) ;
20 }
21 }
22 function handleHttpGetSeed ( r e s ) {
23 /∗∗ Set re sponse to ” seed ” va r i ab l e ∗∗/
24 }
25 . . .
26 function va l ida t eLog in ( ) {
27 new Ajax . Request (LOGIN PREFIX,
28 method : ”GET” ,
29 parameters : ” task=check l og in & . . . ” ,
30 onComplete : t ryLogin
31 } ) ;
32 }
33 function tryLogin ( r e s ) {
34 i f ( i s Su c c e s s ( r e s ) ) {
35 /∗ Create logout anchor
36 Disab le l o g i n form
37 Make answer readab le ∗/
38 } else {
39 a l e r t ( ” Inva l i d account ” ) ;
40 }
41 }
42 . . . /∗∗ On−Demand JavaScr ipt ∗∗/
43 function onGood ( ) {
44 /∗∗ Handle ”Good ! ” button c l i c k s ∗∗/
45 }
46 . . .
47 function tryLogout ( ) {
48 /∗ Disab le logout anchor
49 Enable l o g i n form
50 Make answer masked ∗/
51 }
52 //−−></script>
53 </head>
54 <body> . . .
55 <h1>QAsite</h1> . . .
56 <h2>Question</h2> . . .
57 <h2>Answers</h2> . . .
58 <button id=”good”>Good!</button>
59 . . .
60 <div id=”mask”></div><!−− f o r masking answer−−>
61 . . .
62 <h2>Login/out</h2> . . .
63 <input id=”username” type=” text ” />
64 <input id=”password” type=”password” />
65 <input id=” l o g i n ” type=”submit” />
66 . . .
67 </body>
68 </html>

Figure B.4: Source code of QAsite
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Figure B.5: Screenshots of QAsite
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Table B.4: Given IADP info for QAsite and verification results

#
Interaction
invariant $Var1 $Var2 Resultv

Error# in
Table B.5

3 SRWait onGood successLogin Fault 2

4 UEHRegist UserEvents onload Correct –

4 UEHSingle validateLogin onmousedown Fault 1

8 SeedRetrieve validateLogin handleHttpGetSeed Fault 3

9 LFDisable successLogin onmousedown Correct –

(iii) Answer view: While it is creating the logout widget, QAsite removes
the mask (lines 35-37). The user can then view the answers and click the
“Good!” button (lines 10 and 43-45). When the user logs out, QAsite
disables the logout widget, enables the login form, and masks the answers
again (lines 47-51).

B.2.2 Results of Proposed Methods

Our extraction method extracts finite state machines, as shown in Figure B.6.
Although we cannot find errors at a glance by using the extracted finite state
machine, our verification method reports the presence of three potential faults,
which are listed in Table B.5. Since we implement QAsite while considering Ajax
design patterns, we can determine IADP info for this application, as listed in
Table B.4, from the implemented Ajax design pattern while implementing.

Table B.3 lists results of our validation method. Since Error#1 is executable
in our testing environment, we are easily find it. As for the erroneous behavior for
the invariant#8, if QAsite runs on the representative Web browsers in a reliable
network (e.g., with Firefox and Chrome browsers in a local host environment),
Error#3 is not easily exposed; however, our validation method provides an exe-
cutable evidence that subtle network delays makes it executable. In addition, we
determine the code violation against the invariant#3 as a false positive in our
verification method. This is because the “Good!” button is disabled due to the
overlap with the mask element. Our proposed methods are limited to analyze
such data-intensive impossible behaviors, as described in Section 6.4. Note that
the element position corresponds to the data. Since we implement this application
for illustrating limitations of our proposed methods, these results are conformed
to our expectations i.e., our proposed methods properly works in QAsite.
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Figure B.6: Finite state machines extracted from QAsite
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Table B.5: Erroneous behaviors in QAsite

# Brief explanation of erroneous behavior Actual error

1 QAsite might not prevent multiple calls to Unnecessary

validateLogin when a user unexpectedly double-clicks server sessions

on the login button.

2 QAsite can handle onGood before successful login Invalid user

due to a dead link to the mask image file. operations

3 QAsite can send requests for login attempts without Invalid login

seed data. Users then cannot log in with attempts

their username and password.

Table B.6: Validation results in QAsite

# Interaction invariant Fault class

3 SRWait False positive

4 UEHSingle Delay-dependent potential fault

8 SeedRetrieve Delay-dependent potential fault
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